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VSIDS:	Variable	State	Independent	Decaying	Sum

• Activity	Based	Decision	Heuristic
• Rank	variables	by	literal	count	in	the	initial	clause	database
• Only	increment	counts	as	new	(learned)	clauses	are	added
• Periodically,	divide	all	counts	by	a	constant

• Quasi-static
• Static	because	it	doesn’t	depend	on	variable	state
• Not	static	because	it	gradually	changes	as	new	clauses	are	added

• Decay	causes	bias	toward	recent conflicts.
• Has	a	beneficial	interaction	with	2-literal	watching

• Very	effective
• Variations	and	improvements	widely	used
• Ongoing	efforts	to	understand	its	effectiveness

M.	W.	Moskewicz,	C.	F.	Madigan,	Y.	Zhao,	L.	Zhang,	and	S.	Malik,	
“Chaff:	Engineerng an	efficient	SAT	solver,”	DAC	2001

J.	H.	Liang,	V.	Ganesh,	E.	Zulkoski,	A.	Zaman,	and	K.	Czarnecki,	
“Understanding	VSIDS	branching	heuristics	in	conflict-driven	
clause-learning	SAT	solvers,”	HVC	2015
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Activity	Based	Heuristics	and	Locality	Based	Search

• By	focusing	on	a	sub-space,	the	covered	spaces	tend	to	coalesce
• More	opportunities	for	resolution,	and	generating	smaller	clauses,	since	most	of	the	variables	are	common.
• Variable	activity	based	heuristics	lead	to	locality	based	search 3



VSIDS	Effective	ü
VSIDS	Efficient?
• What	fraction	of	its	work	is	useful?

• Help	understand	potential	improvements.
• Study	in	the	context	of	modern	CDCL	solvers

• Unit	propagation	
• Learned	conflict	clause	is	asserting

• Experimental	Setup
• MiniSAT 2.2.0

• No	preprocessing	for	now…
• Log	critical	events	– decisions,	implications,	conflicts,	learned	clauses,	restarts…
• Generate	and	analyze	Event	Dependency	Graph

• Offline
• SAT	Industrial	Benchmarks

• 300	second	timeout	to	manage	memory	and	log	size	
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Implication	and	Event	Dependency	Graphs

• Implication	edges	generate	dependencies.
• Each	implied	assignment	and	conflict	clause	also	depend	
on	antecedent	clauses

Decision
Implied	
Assg.

Key:

a	=	0

b	=	1

d	=	1

c	=	1 (a	-¾ b)

Implication Dependency
(¾ b	-

d)

(a	-¾b	-
c)

(¾ b	-
¾ c)

Conflict	with	
learned	clause

Original	clause
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Implication	and	Event	Dependency	Graphs

• Implication	graph	represents	a	single	state	in	solver	execution.
• Event	dependency	graph	represents	entire	solver	execution.	Later	events	
depend	on	conflict	clauses,	which	depend	on	previous	events.	

• Subsumes	implication	graphs,	resolution	proofs
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Required,	Unavoidable	and	Wasted	Work

• Solver	finishes	with	a	final	conflict	or	satisfying	assignment.
• Final	event	and	its	dependencies	are	required.
• Implications	with	required	dependencies	are	unavoidable.
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Required,	Unavoidable	and	Wasted	Work

• Solver	finishes	with	a	final	conflict	or	satisfying	assignment.
• Final	event	and	its	dependencies	are	required.
• Implications	with	required	dependencies	are	unavoidable.
• Unrequired	implied	assignments	are	avoidable/wasted if		they	depend	on	an	unrequired	decision.

Decision
Implied	
Assg.

Key:

a	=	0

b	=	1

d	=	1

c	=	1

Implication Dependency

Conflict	with	
learned	clause

Original	clause

b	=	0

c=	0 d	=	0

final	
event

required

unavoidable

(a	-¾b	-
c)

(¾ b	-
¾ c)

(a	-¾ b)

(¾ b	- d
- e)

e	=	0
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Required,	Unavoidable	and	Wasted	Work

• Solver	finishes	with	a	final	conflict	or	satisfying	assignment.
• Final	event	and	its	dependencies	are	required.
• Implications	with	required	dependencies	are	unavoidable.
• Unrequired	implied	assignments	are	avoidable/wasted if		they	depend	on	an	unrequired	decision.
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Where	is	time	spent?

Number	of	decisions	is	a	poor	predictor	of	runtime.
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Where	is	time	spent?

Most	time	is	spent	finding	implications.	Reducing	unrequired	implications	is	essential.
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Satisfiable Instance	Results

SAT	Industrial	Benchmarks
- 53	instances	under	300	second	timeout
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Only	small	fraction	(15%)	wasted,	so	limited	improvements	available	in	decision	heuristic	alone.
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Most	(58%)	implications	are	“unavoidable”	but	not	required,	new	ideas	needed	to	exploit	this.
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A	sizable	fraction	(56%)	of	branches	wasted,	but	these	branches	don’t	yield	many	implications.
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A	sizable	fraction	(56%)	of	branches	wasted,	but	these	branches	don’t	yield	many	implications.
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Unsatisfiable	Instance	Results

SAT	Industrial	Benchmarks
- 57	instances	under	300	second	timeout
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Conclusions

• VSIDS	is	mostly	efficient.
• Most	implications	required	or	unavoidable.
• If	improved	decision	heuristic	cut	out	wasted	decisions,	runtime	improvements	
would	be	marginal.

• Perhaps	improved	ordering	in	implications	could	help.
• Most	work	is	“unavoidable”	in	this	analysis	that	treats	the	implementation	of	finding	
implications	as	fixed.

• Drive	improvements	through	data	analysis.
• Event	log	and	Event	Dependency	Graph	are	useful	analysis	tools

• e.g.,	Time	series	analysis	of	Event	Dependency	Graph	to	determine	“phases”
• Standardize	some	form	of	event	log	to	enable	this

• Subsumes	proof	logs
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