
On	the	Efficiency	of	the	
VSIDS	Decision	Heuristic

Sharad	Malik	and	Victor	Ying*
Princeton	University

*MIT	starting	Fall	2016

Theoretical	Foundations	of	SAT	Solving	Workshop
Fields	Institute,	University	of	Toronto

August	16,	2016
1



VSIDS:	Variable	State	Independent	Decaying	Sum

• Activity	Based	Decision	Heuristic
• Rank	variables	by	literal	count	in	the	initial	clause	database
• Only	increment	counts	as	new	(learned)	clauses	are	added
• Periodically,	divide	all	counts	by	a	constant

• Quasi-static
• Static	because	it	doesn’t	depend	on	variable	state
• Not	static	because	it	gradually	changes	as	new	clauses	are	added

• Decay	causes	bias	toward	recent conflicts.
• Has	a	beneficial	interaction	with	2-literal	watching

• Very	effective
• Variations	and	improvements	widely	used
• Ongoing	efforts	to	understand	its	effectiveness

M.	W.	Moskewicz,	C.	F.	Madigan,	Y.	Zhao,	L.	Zhang,	and	S.	Malik,	
“Chaff:	Engineerng an	efficient	SAT	solver,”	DAC	2001

J.	H.	Liang,	V.	Ganesh,	E.	Zulkoski,	A.	Zaman,	and	K.	Czarnecki,	
“Understanding	VSIDS	branching	heuristics	in	conflict-driven	
clause-learning	SAT	solvers,”	HVC	2015

2



Activity	Based	Heuristics	and	Locality	Based	Search

• By	focusing	on	a	sub-space,	the	covered	spaces	tend	to	coalesce
• More	opportunities	for	resolution,	and	generating	smaller	clauses,	since	most	of	the	variables	are	common.
• Variable	activity	based	heuristics	lead	to	locality	based	search 3



VSIDS	Effective	ü
VSIDS	Efficient?
• What	fraction	of	its	work	is	useful?

• Help	understand	potential	improvements.
• Study	in	the	context	of	modern	CDCL	solvers

• Unit	propagation	
• Learned	conflict	clause	is	asserting

• Experimental	Setup
• MiniSAT 2.2.0

• No	preprocessing	for	now…
• Log	critical	events	– decisions,	implications,	conflicts,	learned	clauses,	restarts…
• Generate	and	analyze	Event	Dependency	Graph

• Offline
• SAT	Industrial	Benchmarks

• 300	second	timeout	to	manage	memory	and	log	size	

4



k

Implication	and	Event	Dependency	Graphs

• Implication	edges	generate	dependencies.
• Each	implied	assignment	and	conflict	clause	also	depend	
on	antecedent	clauses

Decision
Implied	
Assg.

Key:

a	=	0

b	=	1

d	=	1

c	=	1 (a	-¾ b)

Implication Dependency
(¾ b	-

d)

(a	-¾b	-
c)

(¾ b	-
¾ c)

Conflict	with	
learned	clause

Original	clause

5



Implication	and	Event	Dependency	Graphs

• Implication	graph	represents	a	single	state	in	solver	execution.
• Event	dependency	graph	represents	entire	solver	execution.	Later	events	
depend	on	conflict	clauses,	which	depend	on	previous	events.	

• Subsumes	implication	graphs,	resolution	proofs

Decision
Implied	
Assg.

Key:

a	=	0

b	=	1

d	=	1

c	=	1

Implication Dependency

Conflict	with	
learned	clause

Original	clause

Undone	by	
backtrackingb	=	0

(a	-¾b	-
c)

(¾ b	-
¾ c)

(a	-¾ b)

(¾ b	-
d)

Standardize	format	
for	event	logs?
Study	solution	evolution6



Required,	Unavoidable	and	Wasted	Work

• Solver	finishes	with	a	final	conflict	or	satisfying	assignment.
• Final	event	and	its	dependencies	are	required.
• Implications	with	required	dependencies	are	unavoidable.

Decision
Implied	
Assg.

Key:

a	=	0

b	=	1

d	=	1

c	=	1

Implication Dependency

Conflict	with	
learned	clause

Original	clause

b	=	0

c=	0 d	=	0

final	
event

required

unavoidable

(a	-¾b	-
c)

(¾ b	-
¾ c)

(a	-¾ b)

(¾ b	-
d)

7



Required,	Unavoidable	and	Wasted	Work

• Solver	finishes	with	a	final	conflict	or	satisfying	assignment.
• Final	event	and	its	dependencies	are	required.
• Implications	with	required	dependencies	are	unavoidable.
• Unrequired	implied	assignments	are	avoidable/wasted if		they	depend	on	an	unrequired	decision.

Decision
Implied	
Assg.

Key:

a	=	0

b	=	1

d	=	1

c	=	1

Implication Dependency

Conflict	with	
learned	clause

Original	clause

b	=	0

c=	0 d	=	0

final	
event

required

unavoidable

(a	-¾b	-
c)

(¾ b	-
¾ c)

(a	-¾ b)

(¾ b	- d
- e)

e	=	0

8



Required,	Unavoidable	and	Wasted	Work

• Solver	finishes	with	a	final	conflict	or	satisfying	assignment.
• Final	event	and	its	dependencies	are	required.
• Implications	with	required	dependencies	are	unavoidable.
• Unrequired	implied	assignments	are	avoidable/wasted if		they	depend	on	an	unrequired	decision.

Decision
Implied	
Assg.

Key:

a	=	0

b	=	1

d	=	1

c	=	1

Implication Dependency

Conflict	with	
learned	clause

Original	clause

b	=	0

c=	0 d	=	0

final	
event

required

unavoidable

(a	-¾b	-
c)

(¾ b	-
¾ c)

(a	-¾ b)

(¾ b	- d
- e)

Ignores	contributions	to	
decision	heuristic	(VSIDS	score)

e	=	0

wasted
unrequired

9



Where	is	time	spent?

Number	of	decisions	is	a	poor	predictor	of	runtime.

0

50

100

150

200

250

300

0 1 2 3 4

Ru
nt
im

e	
(s
)

Number	of	decisions

Millions

Unsatisfiable

Satisfiable

10



Where	is	time	spent?

Most	time	is	spent	finding	implications.	Reducing	unrequired	implications	is	essential.

0

50

100

150

200

250

300

0 0.5 1 1.5

Ru
nt
im

e	
(s
)

Implied	assignments

Billions

Unsatisfiable

Satisfiable

lI	second	of	runtime	
for	300M	implications

11



Satisfiable Instance	Results

SAT	Industrial	Benchmarks
- 53	instances	under	300	second	timeout

12



Only	small	fraction	(15%)	wasted,	so	limited	improvements	available	in	decision	heuristic	alone.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

Bi
lli
on

s

Satisfiable	Instances

wasted	implications

unavoidable	implications

required	implications

13



Most	(58%)	implications	are	“unavoidable”	but	not	required,	new	ideas	needed	to	exploit	this.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

Satisfiable	Instances

wasted	implications

unavoidable	implications

required	implications

14



A	sizable	fraction	(56%)	of	branches	wasted,	but	these	branches	don’t	yield	many	implications.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

M
ill
io
ns

Satisfiable	Instances

wasted	branches

required	branches

15



A	sizable	fraction	(56%)	of	branches	wasted,	but	these	branches	don’t	yield	many	implications.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

Satisfiable	Instances

wasted	branches

required	branches

16



Unsatisfiable	Instance	Results

SAT	Industrial	Benchmarks
- 57	instances	under	300	second	timeout

17



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

Bi
lli
on

s

Unsatisfiable	Instances

required	implications unavoidable	implications wasted	implications

Only	small	fraction	(13%)	wasted,	so	limited	improvements	available	in	decision	heuristic	alone.
18



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

Unsatisfiable	Instances

required	implications unavoidable	implications wasted	implications

Most	(74%)	implications	are	“unavoidable”	but	not	required,	new	ideas	needed	to	exploit	this.
19



0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

M
ill
io
ns

Unsatisfiable	Instances

required	branches wasted	branches

A	sizable	fraction	(37%)	of	branches	wasted,	but	these	branches	don’t	yield	many	implications.
20



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

Unsatisfiable	Instances

required	branches wasted	branches

A	sizable	fraction	(37%)	of	branches	wasted,	but	these	branches	don’t	yield	many	implications.
21



Conclusions

• VSIDS	is	mostly	efficient.
• Most	implications	required	or	unavoidable.
• If	improved	decision	heuristic	cut	out	wasted	decisions,	runtime	improvements	
would	be	marginal.

• Perhaps	improved	ordering	in	implications	could	help.
• Most	work	is	“unavoidable”	in	this	analysis	that	treats	the	implementation	of	finding	
implications	as	fixed.

• Drive	improvements	through	data	analysis.
• Event	log	and	Event	Dependency	Graph	are	useful	analysis	tools

• e.g.,	Time	series	analysis	of	Event	Dependency	Graph	to	determine	“phases”
• Standardize	some	form	of	event	log	to	enable	this

• Subsumes	proof	logs

22


