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Speculative parallelization: combining architectures and compilers to
parallelize sequential code without knowing what is safe to run in parallel
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Multicores are everywhere Programmers write sequential code



Key idea: Task trees for effective parallelization

Prior work: chains of task spawns

◦ If dependence is violated, all later 
tasks abort and re-execute

◦ Serial task spawn & commit

Task trees avoid serial bottlenecks

◦ Independently spawned leaf 
tasks enable selective aborts

◦ Distributed spawn & commit
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T4: Trees of Tiny Timestamped Tasks
T4 compiler systematically uncovers fine-grained parallelism
◦ Timestamps encode order, let tasks spawn out-of-order
◦ Trees unfold branches in parallel for high-throughput spawn
◦ Efficient parallel spawns support tiny tasks (tens of instructions)
◦ Tiny tasks can exploit locality, reduce communication

T4 exploits the Swarm architecture [Jeffrey et al. MICRO’15]

◦ Tasks appear to run sequentially, in timestamp order
◦ Selectively aborts dependent tasks
◦ Distributed task units can

»Spawn and commit many tasks per cycle
» Run hundreds of concurrent speculative tasks
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Parallelizing entire real-world programs
T4 automatically divides a whole program into tasks
◦ Tasks boundaries at loop iterations and function calls

T4 introduces novel code transformations:
◦ Progressive loop expansion
◦ Call stack elimination
◦ Optimizations to make task spawns cheap
◦ Spatial-hint generation

T4 scales hard-to-parallelize C/C++ 
benchmarks from SPEC CPU2006
◦ Modest overheads: 31% on 1 core
◦ Speedups up to 49× on 64 cores
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swarm.csail.mit.edu

T4 is open source


