
T4: Compiling Sequential Code for
Effective Speculative Parallelization in Hardware

1ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

1.…
2.…
3.…

VICTOR A. YING, MARK C. JEFFREY, DANIEL SANCHEZ

Speculative parallelization: combining architectures and compilers to
parallelize sequential code without knowing what is safe to run in parallel

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Multicores are everywhere Programmers write sequential code



Key idea: Task trees for effective parallelization

Prior work: chains of task spawns

◦ If dependence is violated, all later 
tasks abort and re-execute

◦ Serial task spawn & commit

Task trees avoid serial bottlenecks

◦ Independently spawned leaf 
tasks enable selective aborts

◦ Distributed spawn & commit

2ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

wr

rd

Time

rd

Time…

rd rd

wr

Spawners Workers

Re-execution
Dependence ⇨ abort 

single leaf taskData dependence
results in

many aborted 
tasks 



T4: Trees of Tiny Timestamped Tasks
T4 compiler systematically uncovers fine-grained parallelism
◦ Timestamps encode order, let tasks spawn out-of-order
◦ Trees unfold branches in parallel for high-throughput spawn
◦ Efficient parallel spawns support tiny tasks (tens of instructions)
◦ Tiny tasks can exploit locality, reduce communication

T4 exploits the Swarm architecture [Jeffrey et al. MICRO’15]

◦ Tasks appear to run sequentially, in timestamp order
◦ Selectively aborts dependent tasks
◦ Distributed task units can

»Spawn and commit many tasks per cycle
» Run hundreds of concurrent speculative tasks

3ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE



Parallelizing entire real-world programs
T4 automatically divides a whole program into tasks
◦ Tasks boundaries at loop iterations and function calls

T4 introduces novel code transformations:
◦ Progressive loop expansion
◦ Call stack elimination
◦ Optimizations to make task spawns cheap
◦ Spatial-hint generation

T4 scales hard-to-parallelize C/C++ 
benchmarks from SPEC CPU2006
◦ Modest overheads: 31% on 1 core
◦ Speedups up to 49× on 64 cores

4ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

swarm.csail.mit.edu

T4 is open source


