T4: Compiling Sequential Code for L
Effective Speculative Parallelization in Hardware ||||| bt
VICTOR A. YING, MARK C. JEFFREY, DANIEL SANCHEZ o

Multicores are everywhere Programmers write sequential code
Core H Core £ Core = Core 1
Core H Core £ Core £ Core 2
Core H Core £ Core = Core 3. cee
Core 2 Core ¢ Core { Core

Speculative parallelization: combining architectures and compilers to
parallelize sequential code without knowing what is safe to run in parallel

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

Key idea: Task trees for effective parallelization

Prior work: chains of task spawns Task trees avoid serial bottlenecks
Spawners Workers
| | £\
Y 3 / | Dependence = abort
Data dependence - Re-execution - W'|. single leaf task
results in o [d]
many aborted | _ |
tasks 3 |
—1 1
Time > Time |
o |If dependence is violated, all later > Independently spawned leaf
tasks abort and re-execute tasks enable selective aborts
o Serial task spawn & commit o Distributed spawn & commit

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

4: Trees of Tiny Timestamped Tasks

4 compiler systematically uncovers fine-grained parallelism
> Timestamps encode order, let tasks spawn out-of-order

> Trees unfold branches in parallel for high-throughput spawn

o Efficient parallel spawns support tiny tasks (tens of instructions)

> Tiny tasks can exploit locality, reduce communication

T4 exploits the Swarm architecture peffrey et al. micro15]

> Tasks appear to run sequentially, in timestamp order
16-Tile, 64-Core CMP Tile Organization

> Selectively aborts dependent tasks i

Router L3 Slice

o Distributed task units can

L2

» Spawn and commit many tasks per cycle L1/D L1/D L1/D L1I/D

Core | | Core | Core | | Core

» Run hundreds of concurrent speculative tasks

Task Commit
Queve Queve

" || Task Unit

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

Parallelizing entire real-world programs

T4 automatically divides a whole program into tasks
> Tasks boundaries at loop iterations and function calls

E-l-llm
T4 introduces novel code transformations: %
> Progressive loop expansion [=] |
..) swarm.csail.mit.edu
o Call stack elimination

o Optimizations to make task spawns cheap
. . . W TLS Compiler T4
o Spatial-hint generation o 49 41 37

T4 is open source

T4 scales hard-to-parallelize C/C++
benchmarks from SPEC CPU2006

> Modest overheads: 31% on 1 core
> Speedups up to 49x on 64 cores

Ibm libgntm milc soplex astar Geo. Mean

ISCA 2020 T4: COMPILING SEQUENTIAL CODE FOR EFFECTIVE SPECULATIVE PARALLELIZATION IN HARDWARE

