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Multicores are everywhere Programmers write sequential code
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Speculative parallelization: combining architectures and compilers to
parallelize sequential code without knowing what is safe to run in parallel
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Key idea: Task trees for effective parallelization

Prior work: chains of task spawns Task trees avoid serial bottlenecks
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o |If dependence is violated, all later > Independently spawned leaf
tasks abort and re-execute tasks enable selective aborts
o Serial task spawn & commit o Distributed spawn & commit
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4: Trees of Tiny Timestamped Tasks

4 compiler systematically uncovers fine-grained parallelism
> Timestamps encode order, let tasks spawn out-of-order

> Trees unfold branches in parallel for high-throughput spawn

o Efficient parallel spawns support tiny tasks (tens of instructions)

> Tiny tasks can exploit locality, reduce communication

T4 exploits the Swarm architecture peffrey et al. micro15]

> Tasks appear to run sequentially, in timestamp order
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> Selectively aborts dependent tasks i
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» Spawn and commit many tasks per cycle L1/D  L1/D  L1/D  L1I/D
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» Run hundreds of concurrent speculative tasks
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Parallelizing entire real-world programs

T4 automatically divides a whole program into tasks
> Tasks boundaries at loop iterations and function calls
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T4 introduces novel code transformations: %
> Progressive loop expansion [=] |
.. ) swarm.csail.mit.edu
o Call stack elimination

o Optimizations to make task spawns cheap
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T4 is open source

T4 scales hard-to-parallelize C/C++
benchmarks from SPEC CPU2006

> Modest overheads: 31% on 1 core
> Speedups up to 49x on 64 cores
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