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Abstract—Multicores are now ubiquitous, but programmers
still write sequential code. Speculative parallelization is an
enticing approach to parallelize code while retaining the ease
of sequential programming, making parallelism pervasive. How-
ever, prior speculative parallelizing compilers and architectures
achieved limited speedups due to high costs of recovering from
misspeculation and hardware scalability bottlenecks.

We present T4, a parallelizing compiler that successfully
leverages recent hardware features for speculative execution,
which present new opportunities and challenges for automatic
parallelization. T4 transforms sequential programs into trees of
tiny timestamped tasks. T4 introduces novel compiler techniques
to expose parallelism aggressively across the entire program,
breaking applications into tiny tasks of tens of instructions each.
Task trees unfold their branches in parallel to enable high task-
spawn throughput while exploiting selective aborts to recover
from misspeculation cheaply. T4 exploits parallelism across func-
tion calls, loops, and loop nests; performs new transformations
to reduce task spawn costs and avoid false sharing; and exploits
data locality among fine-grain tasks. As a result, T4 scales several
hard-to-parallelize SPEC CPU2006 benchmarks to tens of cores,
on which prior work attained little or no speedup.

I. INTRODUCTION

Multicore systems have been ubiquitous for years, but

programmers still write sequential code. Parallel programming

remains a specialized skill, with pitfalls such as deadlocks, data

races, and non-determinism [48]. Although some applications

feature regular computations that are easy to parallelize, many

programs feature data-dependent branches, imperative updates

that use multiple levels of indirection, and codebases divided

into many files and libraries. While these features improve

productivity, they stymie the parallelization of sequential code,

as programmers and compilers cannot reliably determine what

work is independent and thus safe to run in parallel.

Parallelizing such programs while retaining sequential se-

mantics requires speculative parallelization. With speculative

parallelization, the compiler divides code into tasks that are

likely to be independent. At runtime, the system tries to run

these likely-independent tasks in parallel, detecting dependences

among them on the fly. Dependences cause some tasks to be

aborted and re-executed to preserve sequential behavior. Spec-

ulative parallelization can be done efficiently with hardware

support, by reusing existing mechanisms (caches for version

management and cache coherence to detect dependences).

∗This work was done while Mark C. Jeffrey was at MIT.

Unfortunately, prior compilers and architectures for spec-

ulative parallelization of sequential code, known as thread-

level speculation (TLS), have proven highly profitable only

in limited cases, and achieved little speedup on many real-

world applications [20, 24, 28, 63, 64, 68, 72, 77, 85]. TLS archi-

tectures suffered from three shortfalls that limited scalability:

(i) resolving dependences by aborting all later tasks en masse,

making aborts very expensive; (ii) one-task-at-a-time spawn or

commit mechanisms, which bottleneck parallelism among tiny

tasks; and (iii) lack of support for locality-aware execution.

Recent speculative architectures have proposed mechanisms

that address the scalability limitations of TLS hardware [21, 32,

34, 35, 37, 74]. But these systems have been designed for explic-

itly parallelized code, and adapting TLS compiler techniques to

these systems yields poor performance. These new architectures

demand a new approach to automatic parallelization, and

without it, their utility is limited.

To address this challenge we present T4, a compiler that

speculatively parallelizes sequential programs to successfully

leverage recent hardware for speculative parallelism. T4 stands

for Trees of Tiny Timestamped Tasks, which summarizes how

we tackle the limitations of TLS compilers. Specifically, T4

contributes four novel techniques to scale:

• T4 divides the program into tiny tasks. It breaks every

function in the entire program into tasks of a few instructions

each. By working at this fine granularity, T4 exposes

parallelism aggressively and isolates contentious memory

accesses to make aborts cheap.

• T4 spawns tasks in parallel, forming task trees, not serial

chains of spawns as in TLS. T4 assigns each task a timestamp

to record program order while spawning tasks out of order.

Trees of timestamped tasks expand in parallel to quickly fill

large systems with work, and they enable selective aborts.

• T4 spawns tasks with few inputs, not threads as in TLS. T4

carefully manages memory and register allocation to make

task spawns very cheap, avoid false sharing, and eliminate

the use of a shared call stack.

• T4 exploits locality by sending tasks that access the same

data to the same tile in the system, reducing data movement.

To execute tiny ordered tasks efficiently, T4 targets the recent

Swarm architecture [34, 35, 36, 74] (Sec. II). We implement T4

within the LLVM [47] compiler framework (Sec. III).

We evaluate T4 with ten SPEC CPU2006 C/C++ programs,

which have frequent dependences that limited the effectiveness
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Fig. 1: 64-core performance of T4 significantly exceeds a TLS
compiler based on prior work. Speedups are relative to serial
code compiled with -O3. More details are in Sec. IX-C.

of prior work (Sec. IX). T4 broadens the range of applications

that benefit from speculative parallelization and yields large

scalability improvements over prior compiler techniques on sev-

eral challenging applications. Fig. 1 compares the performance

of T4 and a TLS system that combines many features from prior

work, for five benchmarks running on 64-core Swarm. T4’s

novel automatic program transformations contribute significant

scalability. In short, new compiler techniques are needed to

exploit hardware for scalable speculative parallelization.

Our results show that, with sufficient compiler and hard-

ware support, speculative parallelization can scale sequential

programs to tens of cores, even with contentious memory

access patterns. These results required modifying less than

0.1% of the original source code, and did not require any

changes to interfaces, data structures, or the program’s sequen-

tial sematics. T4 lets programmers unlock parallelism while

retaining the simplicity of sequential programming. T4 and our

hardware simulator are open source and publicly available at

http://swarm.csail.mit.edu.

II. TREES OF TINY TIMESTAMPED TASKS

We now illustrate the limitations of prior TLS compilers

and introduce key T4 features to overcome these limitations,

explaining the large speedups in Fig. 1. We then detail the

Swarm hardware baseline used to avoid scalability bottlenecks.

A. Spawner tasks enable selective aborts

Fig. 2a shows the code for an example loop that represents

a common pattern found in many programs: each iteration first

performs some work to compute a local value x, highlighted in

blue, and then performs a read-modify-write memory operation

on A[B[i]], highlighted in gold. Fig. 2b illustrates how prior

TLS systems could parallelize this loop: each task begins by

spawning the next in the chain, and then runs an iteration of

the loop. Tasks are spawned in program order, as required by

most TLS architectures because of their simple mechanisms

to schedule tasks based on spawn order.

To preserve sequential semantics, the system tracks the

memory addresses accessed by each task, detecting conflicts

when two accesses to the same location run in the wrong

order and at least one access is a write. In Fig. 2b, task C

writes to an address that conflicts with a read by task D. This

conflict must be resolved by aborting D, and re-executing

it (D′) so it is correctly ordered after C. Any later-ordered

task that received incorrect data from D must also abort.

……
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for (int i = 0; i < size; i++) {

float x = f(i);

A[B[i]] = min(A[B[i]] + x, MAX_VAL);

}
(a) Code for an example loop.

(b) In a TLS task chain, aborting D also aborts later tasks E,F,...

…
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(c) T4’s spawners allow D to abort without aborting other tasks.

Fig. 2: Execution timelines for speculatively parallelizing a loop,
with each iteration constituting a task. A write in task C conflicts
with a read of the same address in task D, resulting in aborts.

To implement this cascade of aborts, prior TLS architectures

conservatively abort all later tasks en masse [24, 28, 64, 68, 72].

These unselective aborts wastefully discard work. They may

also impede scalability by using global synchronization, stalling

the execution of all later tasks until rollbacks have completed.

To address this problem, T4 leverages Swarm’s distributed

selective aborts, wherein an aborting task triggers additional

aborts only for dependent tasks [35]. However, in Swarm and

TLS systems that permit dynamic task spawn, a child task must

abort if its parent aborts, as the parent may have created it due to

misspeculation. To avoid cascading aborts, the compiler should

avoid unnecessary parent-child relationships. The simplest way

T4 accomplishes this is shown in Fig. 2c. A chain of gray

spawner tasks decouples spawns from work: each spawner

spawns (i) the next spawner in the chain, then (ii) a separate

worker task to execute the loop body. Now, D can abort without

affecting later tasks. Spawners neither access nor suffer conflicts

on application data, avoiding unnecessary abort cascades. Fig. 1

shows that selective aborts yields large speedups over TLS.

B. Tiny tasks make aborts cheap

The read-modify-writes of array A may cause aborts, but so

far each abort forces re-executing an entire loop iteration, as

shown in Fig. 3a. This may waste a large amount of work, like

the call to function f in our example.

To make aborts cheap, T4 spawns the call to f into a task

in blue, separate from the contentious accesses to A in the

call’s continuation in gold. The new task boundary serves as a

checkpoint, isolating the contentious accesses. A conflict now
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Fig. 3: Execution timelines depicting a data dependence through
memory. Tiny tasks make aborts cheap and enable spatial hints.

only requires aborting and re-executing a cheap tiny task, as

shown in Fig. 3b. If the function f contains loops or additional

function calls, T4 would also split it into tiny tasks.

Splitting the tiny read-modify-write operations into tasks

also allows an important optimization: when they are spawned,

T4 can tag gold tasks with the cache line they will access

as a spatial hint. Swarm hardware runs same-hint tasks at

the same chip tile to exploit locality (Sec. II-D). This avoids

ping-ponging of A’s cache lines across the chip. Furthermore,

Swarm serializes the execution of same-hint tasks, avoiding

aborts altogether, as shown in Fig. 3c. Thus, hints use dynamic

information to decide which tasks run in parallel.

With the tiny tasks needed to make aborts cheap, achieving

high parallelism requires hardware support. With only a few

instructions, some tasks may be only tens of cycles, or shorter.

To keep 64 cores busy, the system must be able to spawn,

dispatch, and commit about one task per cycle. Prior TLS sys-

tems could not achieve this throughput [35], either because they

could not spawn tasks out of order, or they featured one-task-at-

a-time commit mechanisms that bottlenecked throughput when

using tiny tasks [64]. Consequently, they used static or profiling-

based techniques to select coarse tasks, or merged tasks to make

them coarse at runtime, to amortize the spawn and commit

bottlenecks. These coarse tasks sacrificed parallelism and made

aborts costly. Faced with enormously costly aborts, some prior

systems limited their use of speculative parallelization to loops

or program segments where dependences that would cause

aborts were very rare [12, 21, 49, 60, 81].

T4’s ability to make aborts cheap allows aggressively spec-

ulating for parallelism, even in applications where conflicting

memory accesses are common, such as soplex and astar.

C. Exponential trees make tiny tasks scale

Spawning tiny tasks quickly enough to keep many cores

busy also requires new strategies in software. The serial

chain of spawners in Fig. 2c cannot achieve high spawn

throughput, because only one core is spawning tasks at a

time. These serial task spawns bottleneck performance, limiting

speedups to at most a few percent for the innermost loops in

SPEC CPU2006 [42].

…

…

…

Spawners

…
Fig. 4: Exponential spawner trees improve parallelism.

To address this issue, T4 transforms the code to use

exponentially expanding trees of parallel spawners, as depicted

in Fig. 4. T4 introduces progressive expansion to produce

spawner trees even for loops with unknown bounds or exit

conditions (Sec. VI). When a loop starts executing, spawner

trees rapidly expand to distribute the load of both spawners

and workers across the system. Fig. 1 shows that T4’s task

trees offer further dramatic benefits in performance, on top of

selective aborts.

D. Baseline hardware architecture

T4 parallelizes sequential code by leveraging the Swarm

architecture [35, 36]. Swarm extends a multicore that can run

standard multithreaded programs with hardware support for

speculative tasks. We use Swarm because it scales tasks as

short as tens of instructions to hundreds of cores [34, 37, 74],

but T4’s techniques are general and would apply to any other

system that performs efficient speculative execution of small

ordered tasks. We first explain Swarm’s execution model, then

highlight the key microarchitectural features T4 must exploit

to achieve good performance.

Swarm execution model: A Swarm program’s output will

always match a sequential model where execution is scheduled

by a monotone priority queue. A Swarm program consists of

tasks, where each task has a timestamp that acts as its key

in the priority queue. Swarm guarantees that tasks appear to

run in timestamp order, as if a single thread was popping the

lowest-timestamp task from the priority queue and running it

before popping the next task. Any task can spawn children

tasks, inserting them into the priority queue with timestamps

greater than or equal to the parent’s timestamp. Swarm provides

precise exceptions [37], so behavior conforms to the sequential

model, even with arbitrary memory accesses or system calls.

Microarchitecture–What software needs to know: Swarm

runs tasks speculatively and out-of-order to exploit parallelism.

We focus on Swarm’s key distributed hardware mechanisms

that software should exploit to achieve good performance. For
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Fig. 6: Structure of T4, with corresponding sections of this paper. T4 is implemented by adding a series of passes to LLVM’s
middle-end. Transformation passes newly implemented for T4 are highlighted in orange.

Design goal Hardware mechanism Compiler transform

Composable order Timestamps & domains Topological task ordering
Avoid dependences None needed Stack elimination
Cheap aborts Selective aborts Spawners & tiny tasks

Cheap task spawn
Async. task spawns with Task lifting with
register communication live-in reduction

Parallel task spawn Distributed task units Progressive expansion
Exploit locality Spatial hints Spatial-hint generation

Table 1: To achieve most design goals, T4 introduces new program
transformations to exploit hardware features.

hardware implementation details, please see prior work [35, 36,

74]. Table 1 summarizes how Swarm features couple with T4’s

compiler techniques for effective speculative parallelization.

Swarm extends prior mechanisms for speculation1 to imple-

ment selective aborts, which allow recovery from misspecula-

tion by aborting only small task subtrees or leaf tasks.

Rather than a centralized priority queue, Swarm has dis-

tributed task units that queue tasks near cores. For example,

our implementation has one task unit in each four-core tile, as

shown in Fig. 5. These task units add <2% area overhead to a

standard multicore [35].

When a core spawns a new child task, the task is first buffered

in the local task unit. Values for the new task are sent directly

from registers, requiring the involvement of the core for just a

few cycles. Subsequently, task units send tasks to each other

using point-to-point messages, without involving cores or any

central scheduler. A hardware task queue in each tile holds

tasks waiting to run. Task queues are large (e.g., 256 tasks

per tile), and they spill tasks to memory in the rare event that

they fill up. Task queues prioritize the dispatch of tasks based

on program order (timestamps), not spawn order, making it

profitable to spawn tasks far in advance.

To exploit locality, each task can be given a spatial hint, an

integer that denotes a memory location that the task is likely

to access. This hint is an operand to the task-spawn instruction.

Hardware sends same-hint tasks to run in the same tile, by

hashing each hint to get a destination tile ID [34]. Within a tile,

hardware serializes same-hint tasks to avoid likely conflicts.

When a core finishes a task, the task unit holds the task’s

speculative state in a commit queue until the task commits.

This lets cores execute other tasks while finished tasks wait

to commit. Commit queues are large (e.g., 64 tasks per tile),

so cores can run many tasks ahead of commit. To drain the

commit queues, Swarm’s high-throughput commit protocol uses

hierarchical min-reductions to infer when tasks can commit [35,

1 Swarm uses eager (undo-log-based) version management and eager
(coherence-based) conflict detection with Bloom filters, like LogTM-SE [82].

36], allowing many tasks to commit per cycle [1].

As long as the task queues have tasks ready to run, cores do

not wait for cross-chip communication latency. However, filling

the system with enough tiny tasks can be challenging. T4’s

task trees achieve this with branches that unfold in parallel,

spawning tasks fast enough to keep many cores busy.

III. T4 IMPLEMENTATION OVERVIEW

Swarm has previously been used to manually parallelize

algorithms using explicit timestamps, e.g., to scale graph kernels

that schedule tasks with a priority queue [35, 74]. Instead, T4

uses timestamps implicitly to preserve sequential semantics

in a scalable way. T4 develops new techniques that extract

parallelism despite irregular control flow, while maintaining

the ease of writing deterministic sequential code and without

changing sequential application algorithms or data structures.

Unlike prior work [12, 21, 49, 60, 81], T4 does not use

profile-guided heuristics to limit speculation to coarse tasks

in code regions where dependences are rare. T4 divides the

entire program into tiny tasks, exposing speculative parallelism

starting from the first instruction of main. T4 uses the Fractal

extension to Swarm [74] to compose parallelized code and

perform speculative execution at the granularity of tiny tasks.

Fig. 6 gives an overview of T4’s main components. T4 adds

transformation passes to the LLVM/Clang compiler toolchain.

All of T4’s passes are intraprocedural, that is, the compiler

performs them on one function at a time, without relying on

expensive interprocedural analyses. Thus, T4 compilation times

stay small and proportional to code size.

T4’s passes run towards the end of the LLVM middle-end,

after register promotion with SSA renaming, function inlining,

and optimizations that reduce redundant or dead computation.

Thus, T4’s passes operate on already-simplified IR.

T4 parallelizes this sequential IR in four phases, which

correspond to the following four sections of this paper:

Sec. IV – Reducing memory dependences: To improve

parallelism and avoid false sharing, T4 first optimizes the

allocation of local variables and avoids using a shared stack.

Sec. V – Decomposing programs into tiny tasks: T4 breaks

all code into tiny tasks, using loop iterations and function calls

as task boundaries. T4 tags tasks with timestamps to record

program order, and produces spawners that can spawn many

children tasks in parallel from within straight-line code.

Sec. VI – Loop expansion: T4 generates spawner trees for

loops, exploiting Swarm’s distributed task units for parallel

task spawning. T4 can generate spawner trees even for loops

with unknown tripcounts using progressive expansion.
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Sec. VII – Reducing communication costs: T4 coarsens

tasks with striding accesses patterns and generates spatial hints

to exploit locality. Finally, T4 lifts tasks into separate LLVM

IR functions, reducing register and memory accesses for task

spawns, and often avoids any per-task memory allocations.

After this, the LLVM backend generates machine code.

IV. ELIMINATING THE CALL STACK

Before parallelizing the code, T4 first transforms it to reduce

false sharing and eliminate the shared function call stack, which

would otherwise become a point of contention among parallel

tasks. To accomplish this, T4 introduces transformations that are

safe for general, sequential code and do not rely on hardware

support: bundling local variables into heap allocations and

transforming functions with return values into continuation-

passing style (CPS).

Bundling: T4 replaces local variables that would normally be

allocated on the stack by bundling them into a single heap

chunk. A chunk is allocated at the start of its function and freed

at the end. A variable is bundled only if the program explicitly

uses pointers or references to it that prevent the compiler from

promoting the variable to registers. Most local variables are

not bundled, and are instead promoted to registers in the course

of ordinary compiler optimization. When registers are full, T4

spills these values to thread-private stacks [71], but T4 does

not use stacks to share values among tasks.

Privatization: When bundling variables, T4 also privatizes

variables scoped within the body of a loop, allocating a separate

instance for each iteration of the loop [53]. This avoids false

dependences between loop iterations.

CPS conversion: Continuation-passing style conversion elimi-

nates the stack as a record of function call frames and eliminates

the notion of a function returning to its caller. This means there

is no need to allocate memory on each function call to save

stack frame pointers or return addresses.

T4 converts only functions with return values to CPS, by

modifying them to accept an optional extra argument, a contin-

uation closure. In our implementation, this closure is allocated

on the heap and passed by reference. A closure’s first field is

a pointer to the continuation code, and subsequent fields hold

values captured by the caller and used by the continuation. CPS

conversion modifies some callsites to construct a continuation

closure and pass it to the callee. At the end of the callee’s

execution, program control jumps to the continuation, with

the return value passed in a register. For the code in Fig. 2a,

this allows many calls to f to be launched in parallel, without

contention to allocate stack frames. CPS conversion also allows

each call of f to pass its return value x to a continuation without

contending on a shared stack.

After the transformations of bundling, privatization, and CPS

conversion, the sequential code is ready for parallelization.

Many sources of false dependences have been removed and

the code no longer uses a shared stack, making it easier to

spawn many tasks in parallel.

Comparison with prior work: Cactus stacks as used in fork-

join parallel languages [22, 25] are the closest technique to

T4’s stack elimination. Both techniques allow parallel tasks to

dynamically spawn new tasks, including function calls, without

contention for stack allocation. However, T4’s stack elimination

technique has two important benefits over cactus stacks. First,

T4 is selective in making heap allocations: whereas cactus

stacks require a new heap allocation on each task spawn, most

of T4’s tiny tasks do not require individual memory allocations.

Second, by placing shared data in the heap, T4 separates shared

variables from more frequently used local values on thread-

private stacks. This avoids spurious conflicts that would occur

if both types of data were mingled on a shared stack frame.

CPS conversion is well-studied in compilers for functional

languages [4, 5, 69], where it is used as an intermediate represen-

tation that simplifies optimizations and eases code generation.

We adapt CPS not to ease compilation but to eliminate

contention on the stack during speculative parallelization. To

the best of our knowledge, we are the first to automate CPS

conversion for sequential C and C++.

V. FULL-PROGRAM FINE-GRAIN PARALLELIZATION

To parallelize an entire program, T4 exploits the structure

of loops and function calls to preserve program order with

unbounded levels of nested task spawns.

A. Task delineation

T4 divides code into tasks by turning each loop iteration,

loop continuation, function call, and function call continuation

into a separate task. Like prior work, we find that this approach

naturally limits tasks sizes to be fairly small [49, 79].

Consider again the pattern of execution demonstrated by

Fig. 2a: each loop iteration first does some computation,

then performs a read-modify-write on some value in memory.

That read-modify-write may incur conflicts and aborts. In the

example in Fig. 2a, T4 automatically isolates the read-modify-

write into a tiny task because it is a function call continuation.

B. Task-splitting annotations

While automatic task delineation suffices for compiling most

code, tinier tasks are required to make aborts cheap under

high contention. Thus, T4 also lets programmers annotate code

regions to be split into tasks. Manual annotations help to isolate

contentious memory accesses, which then enjoy the benefits of

cheap aborts and spatial hints (Sec. II-B). These annotations

affect performance, not program semantics: the program retains

its sequential, deterministic behavior. Future work could use

profiling to add fine-grain task boundaries automatically, based

on identifying contentious variables that cause aborts.

C. Task ordering

T4 targets Fractal [74], which extends Swarm’s execution

model by placing tasks in a hierarchy of nested domains. Each

task may create a subdomain and spawn children into that

subdomain. Hardware will construct unique priority keys for

each task so the domain and its creator execute as a single

atomic unit. Within a domain, tasks are ordered with timestamps

as before. Domains simplify the composition of separately

parallelized code that uses independent timestamp schemes.
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T4 orders tasks with a combination of timestamps and Fractal

domains. This process starts with the control flow graph (CFG)

of a function, a directed graph whose nodes are basic blocks.

If the function will have internal tasks, T4 creates a domain

for those tasks. Before assigning timestamps, T4 contracts

loops into a single node, so that the remaining CFG becomes

acyclic.2 T4 then topologically sorts the nodes of the acyclic

CFG, and assigns timestamps to tasks in topological order,

treating each loop as a single task. Thus, it is guaranteed that

these timestamps reflect program order.

For each loop, T4 creates a Fractal subdomain and repeats

task delineation within the loop. To do this, T4 first gives each

iteration a starting timestamp that is a multiple of the loop

index. Then, T4 examines the CFG region made of the loop

with the back edge removed, again using topological sorting

with nested loops contracted, to assign timestamps reflecting

task order within each iteration. T4 recursively repeats this

process for nested loops, creating tasks at all loop nest levels.

D. Parallel task spawning

After dividing the sequential code into tasks, T4 determines

where to place the spawn point for each task. T4 uses a heuristic

that aggressively favors exposing parallelism and enabling

selective aborts: task T spawns task U as a descendant only if

T produces live-out register values used by U . For example,

in Fig. 2a, since f produces a return value x used in the

continuation, there is no point in spawning the call to f and

its continuation in parallel. So T4 passes the continuation to f,

which spawns the continuation when it has computed x. These

separate tasks keep aborts cheap (Sec. II-B). Otherwise, for

example when considering a function call and continuation

tasks that do not use any return value of the function, the tasks

are spawned as siblings, allowing these tasks to run in parallel

and be aborted selectively if needed (Sec. II-A).

VI. PARALLEL LOOP EXPANSION

T4 adopts a multifaceted strategy to parallelize loops. Central

to this strategy is the use of spawners as described in Sec. II. T4

uses three compiler transformation strategies to expand loops

to generate spawners: progressive tree expansion, bounded tree

expansion, and chain expansion. Progressive expansion, a new

strategy unique to T4, is the most critical one to parallelize

programs with irregular control flow.

T4’s parallel tree loop expansion differs from all prior TLS

compilers, which spawn iterations of any single loop serially.

Exponentially expanding branches of spawner trees expose

asymptotically more parallelism: the critical path of task spawns

grows logarithmically in the number of iterations, instead of

linearly, and most task spawns are off the critical path. When

T4 generates spawners, it also uses LLVM’s scalar evolution

analysis to identify and eliminate induction variables that cause

unnecessary dependences between iterations [78]. To avoid

flooding the machine with tasks, each spawner is timestamped

according to the first loop iteration it will spawn, which

prioritizes spawners properly to expand the tree gracefully.

2 Node splitting can make all cycles into natural loops [33].

int i = 0;

while (status[i]) {

if (foo(i)) break;

i++;

}

void iter(Timestamp i) {

if (!done) {

if (!status[i]) done = 1;

else if (foo(i)) done = 1;

}

}

0

iter(0)

iter(1)

Source code:

4

iter(4)

iter(5)

2

iter(2)

iter(3)

6

iter(6)

iter(7)
10

iter(10)

iter(11)
8

iter(8)

iter(9)
12

iter(12)

iter(13)

void spawner(Timestamp i, int stride) {

if (!done) {

swarm_spawn(iter, i);

swarm_spawn(iter, i + 1);

swarm_spawn(spawner, i + stride, 2*stride);

swarm_spawn(spawner, i + 2*stride, 2*stride);

}

}

Fig. 7: Progressive expansion scales a while loop. Boxes show
pseudocode for tasks of the transformed loop. The call to foo

may spawn nested tasks (not shown).

A. Progressive tree expansion

Progressive expansion generates spawner trees for loops

where the number of iterations is unknown. Fig. 7 shows

progressive expansion in action on such an unknown-tripcount

loop. Spawner tasks are shown in gray and loop iteration

tasks are shown in blue. The number shown in each task is

its timestamp. Fig. 7 shows spawners that each spawn two

loop iterations directly, then spawn two child spawners with

doubled stride. Each spawner ensures its subtrees are balanced

by giving its children spawners interleaved iterations. For

example, in Fig. 7, the spawner children of spawners 2 and

4 are interleaved (with timestamps 6 and 10, and 8 and 12).

This exploits Swarm’s ability to spawn tasks in any order. T4

initiates loop execution by spawning the initial spawner task,

spawner(0, 2), which will lead to the eventual spawning of

all loop iterations. In our evaluation, each spawner spawns four

loop iterations and four child spawners, as we find this higher

fanout improves scalability.

To handle unknown termination conditions, progressive ex-

pansion transforms control dependences into data dependences

on a newly created done flag. Control-flow paths that would

exit the loop write to this flag, as shown in the lower left of

Fig. 7. Loop iteration and spawner tasks read this flag and

exit early if the loop has already terminated. The new flag is

an ordinary memory-resident variable that exploits Swarm’s

ordinary mechanisms for scalable speculation. Each task that

reads the variable brings a shared copy into an L1 cache.

When the flag is finally written upon loop termination, cache

invalidations trigger the discovery of conflicts and abort any

tasks that misspeculatively ran past the end of the loop.

B. Bounded tree expansion

In some loops, LLVM analyses can find an expression

for the number of iterations. For example, in Fig. 2a, the

compiler knows the tripcount will be given at runtime by the

variable size. For these known-tripcount loops, T4 can generate
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0

do_body(0x6823)

do_body(0xe552)

2

3

1 do_body(0xface)

do_body(0xf000)
Node* ptr = start;

while (ptr) {

ptr = ptr->next();

do_body(ptr);

}

Source code:

Fig. 8: Chain expansion avoids conflicts on ptr. Executions of
do_body may spawn nested tasks in parallel (not shown).

spawner trees without control speculation: each spawner is

responsible for a range of consecutive iterations, which it divides

evenly across children spawners, forming a simple balanced

tree as shown in Fig. 4. Our implementation of this compiler

optimization for known-tripcount loops is similar to that in

Tapir [66]. However, to improve parallelism, we increase the

fanout so each internal spawner spawns four children spawners,

and each leaf spawner spawns up to eight loop iterations.

C. Chain expansion

While progressive expansion can operate on any loop,

spawner trees are unprofitable for the loop in Fig. 8, where each

iteration depends on the previous iteration’s update of ptr. T4

identifies such serializing variables meeting three conditions:

(i) every iteration unconditionally reads and writes to it, (ii) all

computation in the loop body is dependent on the value of the

variable, and (iii) the variable is not an induction variable that

can be rewritten/eliminated. If all three conditions are met, T4

performs chain expansion. In practice, we find hot loops rarely

require chain expansion.

As shown in Fig. 8, chain expansion divides each loop

iteration into two parts: a slice that computes the serializing

value, shown in orange, and a slice that consumes it, shown in

blue. Chain expansion performs well in outer loops where the

consuming slice is large, containing inner loops or function calls

that T4 breaks into nested parallel tasks. As an optimization, T4

can schedule orange tasks to run at one location so spawn rate

is insensitive to communication latency, as in SpecDSWP [77].

VII. REDUCING COMMUNICATION COSTS

T4 performs optimizations that reduce data movement costs

among tasks: exploiting locality by coarsening tasks with

striding accesses and generating spatial hints, and packing

live-in values to reduce task-spawn costs.

A. Loop task coarsening for cache alignment

To reduce false sharing and aborts, T4 identifies inner loops

that scan through memory with a fixed stride per iteration and

coarsens the tasks associated with the loop to make tasks cache-

aligned: each coarsened task covers all the elements of one or

more cache lines, and consecutive tasks access disjoint cache

lines. For example, with 64-byte cache lines and accesses that

stride 48 bytes per iteration, T4 coarsens by a factor of four

and generates prolog and epilog code so that each task covers

its own three cache lines. We adapt strip-mining and prolog

loop generation from SIMD vectorization [7, 46]. However,

while automatic vectorization relies on fragile pointer analyses

or programmer annotations (e.g., the restrict keyword) to

prove memory accesses are safe to parallelize [51], T4 coarsens

loop tasks without relying on aliasing guarantees, eliminating

false sharing due to striding accesses in many inner loops.

B. Spatial-hint generation for locality-aware speculation

Spatial hints exploit spatial locality even for irregular access

patterns. To generate spatial hints, T4 identifies tasks that

write to a single memory address, or a related set of memory

addresses (e.g., addresses falling within a single cache line), as

candidates to be given spatial hints. For each candidate task, T4

checks if it can hoist the computation of the accessed address

into the parent task. This hoisting is easy for tiny tasks, where

the nearest task boundary preceding a memory access is close

by. If the address computation is successfully hoisted, then T4

uses the cache line address (computed by a right shift) as the

hint. This reduces ping-ponging of frequently written cache

lines (Sec. II-B). Sec. VIII presents a case study where this is

crucial to obtain scalability.

C. Task lifting with live-in reduction

Up to now, T4 represented task code nested within larger

functions, using an approach similar to Tapir [66]. This allowed

task transformations to reuse existing LLVM analyses on

control- and data-flow across task boundaries. To finalize task

boundaries, T4 lifts each task’s code into a separate LLVM

IR function, which requires each spawn site to capture the

task’s live-in values in a closure.3 If a task’s live-ins fit into the

registers that hardware task descriptors can hold (five 64-bit

values in addition to the function pointer and timestamp in our

implementation), the entire closure is passed through registers,

avoiding memory accesses. If live-ins do not fit in registers, the

parent task allocates the extra live-ins on the heap and passes

a pointer so the child task can read the values.

T4 performs three optimizations to reduce closure sizes:

1) Loop environment sharing allocates a single heap object

that holds all loop-invariant live-ins. All loop iterations read

from this single location, achieving good L1 hit rates.

2) Live-in sinking finds task live-ins that can be very cheaply

recomputed from other available values (e.g., multiple ad-

dresses computed by adding constant offsets to the same

pointer) and sinks or copies the computation into the task [2].

3) Register packing generates instructions to shift remaining

live-ins into the minimum number of machine registers. For

example, real-world programs often use 32-bit integers, and

T4 can pack two 32-bit live-ins into a 64-bit value for task

spawns. T4 adds instructions at the start of the task to unpack

the live-ins into separate registers.

These optimizations trade increased instruction count for

reduced task-spawn data movement. With these optimizations,

most task spawns need only capture a few live-in registers into

a small task descriptor, which is cheap to send over the on-chip

network and hold in hardware task queues.

VIII. PUTTING IT ALL TOGETHER

We now present a case study on how T4’s techniques

combine to parallelize a challenging loop from 473.astar.

Due to its frequent data dependences, no prior TLS system has

reported significant speedup on astar.

3 Much like lambda lifting or closure conversion [4, Chapter 10].
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1 int bound2l = 0;

2 for (i = 0; i < bound1l; i++) {

3 index = bound1p[i];

4 index1 = index -yoffset -1; // NW neighbor

// 1st of 8 identical code blocks:

5 if (waymap[index1 ]. fillnum != fillnum

6 && maparp[index1] == 0) {

7 bound2p[bound2l ++] = n;

8 waymap[index1 ]. fillnum = fillnum;

9 waymap[index1 ].num = step;

10 if (index1 == endindex) {

11 flend = true;

12 return bound2l;

13 }

14 } // End of 1st identical code block.

15 index1 = index -yoffset; // N neighbor

// 2nd of 8 identical code blocks appears here.

26 index1 = index -yoffset +1; // NE neighbor

// 3rd of 8 identical code blocks appears here.

// ... more repetitions w/ different index1 ...

// 8th of 8 identical code blocks appears here.

92 }

Listing 1: Code taken from Way_.cpp in astar, compressed
and with repeated code blocks omitted

35

Core 7
Core 6
Core 5
Core 4
Core 3
Core 2
Core 1
Core 0

Time

37

39

40

31: NE 32: SE 32: S 38

36

34: S34: SW 34: SE

33: W 33: E

33: NW 33: N 33: NE

34: NW 34: N 34: NE

34: W 34: E

33: S33: SW 33: SE

33: E

35: S35: SW 35: SE

35: NW 35: N 35: NE

35: W 35: E

36: S36: SW 36: SE

37: NW 37: N 37: NE

37: W 37: E

36: E36: W

36: NW 36: N 36: NE

35: W 35: E

37: W 35: NE 36: NW

37: SW 37: S

37: W

ABORT RE-EXECUTE

38: NW

38: W

32: S

Fig. 9: Execution timeline of astar. Task colors match Listing 1.
Numbers denote loop iterations. Arrows indicate spawns of
neighbor-append tasks.

Listing 1 shows a hot loop in astar, which finds paths in a

2D grid. Each loop iteration visits a node identified by index.

For each of the node’s eight neighbors in the grid, identified

by values of index1, the code checks whether the neighbor

should be appended to a queue, bound2p, to be visited later.

This happens about once per iteration on average.

However, to avoid frequent, expensive aborts, we must isolate

neighbor-appends, such as on line 7, as each append depends on

the previous update to bound2l. T4 delineates tasks as shown

in Fig. 9: each iteration starts with a blue task which spawns

eight neighbor-checking tasks, in green, which have been split

into tasks by annotations and use spatial hints (Sec. VII-B)

to exploit locality in the waymap array. Neighbor-checking

tasks that access different cache lines within waymap can run in

parallel. Neighbor-checking tasks spawn neighbor-append tasks,

in orange, when needed. Neighbor-append tasks use the cache

line of bound2l as a spatial hint, so accesses to this contentious

variable execute serially in one tile. This is critical to achieve

any speedup (Sec. IX-D). Aborts still occur if tasks execute

out of order, but Swarm’s timestamp prioritization limits the

frequency of aborts.

To keep cores busy, T4 must parallelize neighbor-checking

tasks across loop iterations. This is an unknown-tripcount

loop due to return statements inside the loop, so progressive

expansion is needed to allow for spawning iterations quickly.

Cores
64 cores in 16 tiles (4 cores/tile), 3.5 GHz, x86-64 ISA;
Haswell-like 4-wide OoO superscalar [27]

L1 caches 32 KB, per-core, split D/I, 8-way, 2-cycle latency

L2 caches 1 MB, per-tile, 8-way, inclusive, 9-cycle latency

L3 cache
64 MB, shared, static NUCA [43] (4 MB bank/tile),
16-way, inclusive, 12-cycle bank latency

Coherence MESI, 64 B lines, in-cache directories

NoC
Four 4×4 meshes, 192-bit links, X-Y routing, 1 cycle/hop
when going straight, 2 cycles on turns (like Tile64 [80])

Main mem 4 controllers at chip edges, 120-cycle latency

Queues
64 task queue entries/core (4096 total),
16 commit queue entries/core (1024 total)

Conflicts

2 Kbit 8-way Bloom filters, H3 hash functions [14]
Tile checks take 5 cycles (Bloom filters) + 1 cycle per
timestamp compared in the commit queue

Commit Tiles send updates to virtual time arbiter every 100 cycles

Spills Spill 15 tasks when task queue is 86% full

Table 2: Configuration of the 64-core system.

Benchmark Lines of code Modified lines Cycles per task

429.mcf 1,574 None 236
433.milc 9,575 +18, -13 153
444.namd 3,887 None 1772
450.soplex 28,302 +25, -16 38
456.hmmer 20,680 +11, -9 170
462.libquantum 2,605 None 211
464.h264ref 36,032 +12, -9 25
470.lbm 904 +1, -1 809
473.astar 4,285 +29, -144 11
482.sphinx3 13,128 +17, -8 47

Total 120,972 +114, -201 347

Table 3: SPEC CPU2006 benchmarks used in the evaluation.
Lines of code exclude comments and whitespace.

IX. EVALUATION

A. Experimental methodology

Simulated hardware: We use a cycle-level simulator based

on Pin [50, 57] to model Swarm systems with parameters given

in Table 2. We use detailed core, cache, network, and main

memory models, and simulate all task and speculation overheads

(e.g., task traffic, running misspeculating tasks until they abort,

simulating conflict check and rollback delays and traffic, etc.).

We also simulate smaller systems with fewer tiles, keeping

per-core cache sizes and queue capacities constant. This is

equivalent to using partitions of the 64-core system.

To reduce wasted work, we also implement a gentle hardware

heuristic for throttling overly eager speculation. If a task has

been repeatedly aborted, the task unit delays its next dispatch,

and the delay grows with additional aborts. We find this gentle

throttling does not hurt performance in any benchmark. In

fact, it helps execution time for benchmarks with a high ratio

of aborts, by avoiding cache-line ping-ponging and network

contention created by misspeculating memory operations.

Benchmarks: We evaluate T4 with real-world applications

from SPEC CPU2006 [29]. We exclude the ten Fortran

benchmarks, which are floating-point, scientific applications

for which manually parallelized versions already exist. The

C/C++ programs we evaluate are hard to auto-parallelize,

even with speculation [19]. To the best of our knowledge,

Packirisamy et al. obtained the best previous speedups for these

benchmarks—1.6× at 4 cores, 1.91× at 8 cores—by combining
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Fig. 10: For each system size, performance of T4 normalized
to serial code running on the same system.
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Fig. 11: Breakdown of execution time of T4 systems with 1, 4, 16, and
64 cores, normalized to the Serial code on a 1-core system.

advanced compiler techniques with hardware support for TLS

and synchronization [56].

Several benchmarks cannot be compiled by T4 because

they use features whose existing implementations rely heavily

on a conventional stack layout, such as C++ exceptions or

setjmp/longjmp.4 We evaluate all ten benchmarks that can be

compiled by T4, listed in Table 3.

As T4 is based on LLVM/Clang 5.0, we compare the results

of compiling each benchmark with T4 v.s. an ordinary serial

binary compiled with LLVM/Clang 5.0. Both versions are

compiled with -O3. We verified that T4-compiled benchmarks

deterministically produce the same result as the serial version.

We evaluate all benchmarks with the ref (largest) inputs.

Since these run for a very long time, we use SimPoints [58, 67]

to select a sample period of the serial version’s execution

containing 2 billion dynamic instructions that is representative

of steady-state execution. None of the benchmarks spends the

sample period in a single loop: each sample includes many

transitions between loops and other hot code regions.

To ensure we simulate the same sample region regardless of

compiler transformations, we automatically instrument certain

function entry points with heartbeats. Our simulator counts

heartbeats to determine the start and end of the sample period.

We modify the source code of some of the benchmarks to

help the compiler uncover more parallelism. Table 3 reports

the lines changed, a small fraction of the program’s lines of

code in all cases. In soplex and sphinx3, these modifications

are annotations to break up tasks as explained in Sec. V-B. In

astar, we deduplicate repetitive code and add annotations to

break up tasks as shown in Sec. VIII. We manually perform

loop fission in hmmer to allow T4 to better divide different

striding memory accesses into parallel tasks that access separate

cache lines (Sec. VII-A). This loop fission can be automated in

future work. lbm, milc, and h264ref use simple modifications

to avoid false sharing. In milc and h264ref, we move the

declarations of variables into loops when they are used to hold

short-lived values within each loop iteration. This enables T4’s

privatization to avoid false dependences (Sec. IV).

We organize the evaluation as follows: we analyze T4’s over-

all performance (Sec. IX-B), how T4’s spawner trees are key to

performance (Sec. IX-C), the effect of task-splitting annotations

4 Future work could address this, e.g., by passing escape continuations [4, 70].
This needs non-trivial engineering due to how exceptions are handled in LLVM.

and hints (Sec. IX-D), task lifting optimizations (Sec. IX-E),

and sensitivity to core microarchitecture (Sec. IX-F).

B. T4 performance

Fig. 10 reports the performance of T4 (higher is better)

relative to serial code on systems with 1, 4, 16, and 64 cores.

We divide benchmarks into two classes: Class 1’s hottest

inner loops have some iterations that are independent of other

iterations, while Class 2 benchmarks’ hottest loops contain

mutable scalar variables accessed on every iteration. Such

data dependences necessarily limit the scalability of Class 2

benchmarks, so we focus on Class 1 benchmarks. T4 scales

Class 1 benchmarks well, achieving gmean 19× speedup. T4

scales multiple benchmarks to tens of cores, with up to 49×

speedup on 64 cores (for lbm).

Fig. 11 provides further insight into these results. Each bar’s

height shows the execution time (lower is better) of T4 at 1, 4,

16, or 64 cores, relative to the execution time of the original

serial version on 1 core. The 1-core T4 bars show that T4

introduces modest overheads of gmean 32% across all ten

benchmarks. The majority of the overhead is from instructions

T4 generates to pack and unpack live-ins when spawning tasks

or to load values from shared loop environments (Sec. VII-C).

T4 has the highest overheads in astar, soplex, and h264ref,

which are divided into very tiny tasks, tens of cycles long, as

shown in Table 3. In return, short tasks make aborts cheap and

confer high speedups.

Fig. 11 also shows a breakdown of how cycles are spent,

averaged across cores. Cores execute (i) tasks that later commit

or (ii) later abort, or they spend cycles idle because of (iii) the

throttling heuristic, (iv) a full commit queue, or (v) no tasks

available to run. This breakdown shows that, on all benchmarks

at 4 cores, cores spent most of their time executing useful work

that will commit. Because Class 2 benchmarks do not scale

beyond 4 cores, their execution time changes little at higher

core counts, with the additional cores mainly running more

speculative tasks that abort or are throttled when tasks abort

repeatedly. Class 1 benchmarks scale to tens of cores, and

aborts take a minority of execution time even at high core

counts. Cores rarely stall on task commit, as commit queue

(Sec. II-D) occupancy averages 43 buffered tasks waiting to

commit per tile, across all benchmarks. Cores also rarely lack

tasks to run, as task queues average 24 runnable tasks per

tile. Timestamp-prioritized spawners (Sec. VI) unfold trees

gradually, so time lost to spilling task queues is <0.01%.
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Fig. 12: Execution time for Ideal TLS baseline, and T4 when successively enabling more features: Selective
aborts, Bounded tree expansion, and finally Progressive expansion.
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Class 1 benchmarks: lbm, libquantum, and milc have plen-

tiful parallelism. Prior work has noted that data dependences

between iterations of their inner loops are rare, but achieved

limited scalability due to inefficient mechanisms for spawning

large numbers of speculative tasks [56]. T4 scales these

benchmarks with highly parallel spawner trees.

T4 also finds significant parallelism in soplex and astar.

yielding 7.6× and 4.8× speedups, respectively. Data depen-

dences in these benchmarks do cause noticeable aborts, but

because these aborts are selective, they do not impede the

scalability of independent work. The majority of soplex’s

hot inner loops resemble the example in Fig. 2a. Meanwhile,

astar’s inner loops are described in Sec. VIII. Both have read-

modify-write operations and feature significant spatial locality

that spatial hints exploit.

Class 2 benchmarks: These benchmarks are dominated

by loops where each iteration unconditionally accesses a

shared mutable variable, creating a long critical path of data

dependences that limits parallelism. In sphinx3 and mcf, T4

extracts parallelism by isolating dependences into tiny tasks. In

sphinx3, the tiny tasks are generated due to manual annotation

(Sec. IX-D). Meanwhile, mcf spends much of its time in pointer-

chasing loops in which the data dependence is at the top of the

loop body. T4 pipelines the execution of loop iterations using

chain expansion (Sec. VI-C), without requiring any source code

annotations, with performance similar to prior TLS systems.

Parallelism is limited in hmmer and h264ref, and T4 yields

no speedup on namd. In these benchmarks, inner loops have

many true loop-carried dependences and little independent work

that can run in parallel. Prior work obtains similar or slightly

higher speedups on Class 2 benchmarks [56] through aggressive

compiler optimizations that move instructions off the critical

path [83]. These compiler techniques could be implemented in

T4 to improve the performance of these benchmarks. However,

T4 focuses on applications where spawner trees, tiny tasks, and

spatial hints can avoid a rigid critical path, allowing tasks to

run in parallel without every loop iteration participating in a

serial bottleneck.

C. Benefits of spawners and spawner trees

Benchmarks show large variability in scalability, but T4’s

uses of spawners yield broad benefits across many benchmarks.

Fig. 12 compares the execution time of three T4 variants

with an idealized TLS baseline. All experiments use small

tasks, spatial hints, and the same Swarm hardware support

for task spawns, task commit, and conflict detection. Fig. 12a

shows 64-core results for Class 1 benchmarks (as in Fig. 1).

Fig. 12b shows Class 2 benchmarks at four cores, since their

performance does not meaningfully improve beyond four cores.

In the TLS baseline, function calls and nested loops have

the benefit of parallel spawns, but iterations within each loop

are spawned one at a time, as in prior work [49, 64]. When a

conflict is detected, it is broadcast to all tiles, which perform

an idealized abort and rollback of later tasks in a single cycle.

We idealize aborts to show that TLS has limitations that go

beyond hardware bottlenecks.

The first T4 variant (+S) uses spawners to enable Swarm’s

selective aborts (Sec. II-A). Enabling selective aborts not only

leads to less wasted work, it also reduces no-task cycles, because

in the moments following an abort, more independent tasks

are still available to run. This benefits all benchmarks but

lbm, which had few aborts to begin with. lbm +S is slightly

worse than the ideal baseline because we are now modeling

the latency of rolling back writes on each abort.

The middle T4 variant (+B) enables bounded spawner

trees for known-tripcount loops (Sec. VI-B). This brings

significant benefits to the hottest inner loops in libquantum,

lbm, and soplex. The final T4 variant (+P) enables progressive

expansion to scale unknown-tripcount loops, which appear in

every benchmark except lbm. By spawning work more quickly,

spawner trees reduce the time that cores spend idle. Progressive

expansion also has a mixed effect on aborts: running more

speculative tasks may result in more aborts, but populating

tasks queues more quickly can also reduce aborts in some

benchmarks, as task queues can better prioritize the dispatch

of less-speculative (lower-timestamp) tasks.

D. Task-splitting annotations and spatial hints

Fig. 13 shows the performance impact of disabling code

annotations that instruct T4 to split tasks at finer granularity

(Sec. V-B) for the three benchmarks that use annotations:

soplex, astar, and sphinx3. These benchmarks are dominated

by loops where most computation is spent on parallelizable

work to compute updates to apply to shared data, and little time

is spent updating the shared data itself. Without annotations, the

only task boundaries come from loop iterations and function

calls, leaving the expensive parallelizable computation in the

same task as the conflict-prone memory accesses. Thus, the

three benchmarks become dominated by expensive aborts and

throttling of aborting tasks. (If throttling is disabled, total
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execution time is even worse.) This shows the importance of

identifying accesses to contentious data and isolating them with

tiny tasks, which makes aborts cheap and enables spatial hints

(Sec. II-B). Because task-splitting annotations cannot change

program output, it is safe to try inserting them in different

positions without careful analysis and then keep what works

best. As shown by Table 3, we annotated a very small portion

of the code in these three benchmarks.

T4 is the first compiler to obtain any meaningful speedup

on astar or soplex. Prior TLS efforts could not even achieve

2× speedup for astar on any number of cores. This shows

the importance of using tiny tasks that enable spatial hints

(Sec. VII-B). Hints are critical to scalability, as otherwise a

single frequently written cache line can cause copious aborts.

1c 32c 64c
1

4

8

S
p

e
e

d
u

p

Hints

No Hints

Fig. 14: astar needs
spatial-hint generation.

When astar repeatedly updates

a single variable bound2l, these se-

rialized operations form a critical

path that limits whole-program perfor-

mance (Sec. VIII). Fig. 14 shows that

spatial-hint generation is critical to

scale astar, and without it T4 would

fall flat, achieving 1.5× speedup on

16 cores and deteriorating thereafter.

Without spatial hints, tasks are sent to random tiles, ping-

ponging the cache line in which bound2l resides.

E. Task spawn traffic and effect of live-in reduction

T4’s optimizations produce tasks with few live-ins (i.e.,

inputs). This is crucial, because it enables spawning tiny

tasks and distributing them across a large chip with small

bandwidth costs. Table 4 shows the volume of live-in values

transferred from parents to children tasks, with and without loop

environment sharing and live-in sinking (Sec. VII-C). These

optimizations reduce the number of register values that must

be saved into task descriptors and shipped across the network,

which are the main overheads associated with task spawning.

With T4’s optimizations, spawning most tasks only requires

moving a few 64-bit register values (Sec. II-D), much cheaper

than prior TLS systems that moved whole register contexts.

Table 4 shows that most of T4’s task spawns do not allocate

memory.

No optimizations With optimizations
Benchmark bytes/task mem alloc bytes/task mem alloc

lbm 21.6 0% 18.8 0%
libqntm 26.9 17% 12.0 0%
milc 21.5 1% 20.4 0%
soplex 29.8 14% 17.0 0%
astar 63.0 67% 24.7 0%
sphinx3 64.7 26% 26.8 4%
hmmer 90.2 86% 26.6 18%
mcf 148.7 97% 28.6 3%
h264ref 54.0 66% 22.4 5%
namd 175.1 34% 185.8 33%

Average 69.6 41% 38.3 6%

Table 4: T4’s task lifting optimizations reduce NoC traffic due
to task live-ins and reduce memory allocations for task spawns.
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Fig. 15: Performance of T4 on systems with simple in-order cores,
normalized to serial code running on the same system.

F. Core microarchitecture

Results so far use up to 64 superscalar out-of-order (OoO)

cores, reflecting real products available in 2020. But T4 is

orthogonal to core microarchitecture. For comparison, Fig. 15

shows the performance of T4 on systems with scalar, in-order

cores. Despite the very different core microarchitectures, simple

in-order cores show T4 enjoys similar speedups as with OoO

cores in Fig. 10. OoO cores run gmean 2.6× faster than simple

in-order cores by exploiting ILP within each task, while T4

exploits speculative parallelism over hundreds of tasks, a far

larger window than OoO cores.

X. RELATED WORK

Parallelizing sequential code is a long-standing problem for

which many approaches have been tried. We first discuss non-

speculative parallelization, which achieves high scalability and

efficiency for some loops, but fails to apply to many real-world

programs. We then discuss work in speculative parallelization

in software, where advanced techniques can significantly benefit

some workloads. These software techniques could be combined

with T4. Finally, we review prior work in TLS that combined

hardware support and code transformations that carefully sched-

ule tasks to extract parallelism from challenging applications

with frequent dependences. T4 shares the goals of TLS but

takes a different approach: dynamically scheduling tasks to

exploit fine-grain parallelism and locality with mechanisms

that avoid serial bottlenecks.

A. Non-speculative parallelizing compilers

Non-speculative parallelizing compilers [8, 53] divide sequen-

tial code into tasks that are guaranteed to be independent and

can thus run in parallel. The key limitation of these compilers is

that ensuring that two tasks are independent is often impossible

at compile time. Polyhedral compilers [9, 26] can parallelize

loops that perform regular accesses into arrays or matrices.

But many programs are irregular: they use multiple levels of

indirection or pointer-based structures, making static analyses

ineffective [30, 41]. In addition, many programs span multiple

translation units and libraries, so compilers have limited visibil-

ity into invoked code, impeding non-speculative parallelization.

For irregular programs, non-speculative parallelization has

focused on exploiting pipeline parallelism in inner loops.

DSWP [55, 61] pins loop iteration fragments across cores

to localize loop-carried dependences, and relies on hardware
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support for fine-grain inter-core communication. HELIX [13]

implements efficient inter-thread communication in software,

which suffices for some programs, and HELIX-RC [12] adds

hardware support for inter-thread communication to accelerate

a broader set of benchmarks. While these non-speculative

parallelization techniques are highly efficient for the loops

where they apply, they rely on static analyses to partition

a loop into stages with unidirectional dependences, and are

inapplicable if the loop contains occasional cyclic dependences.

They use conservative serial execution for any code outside

the loops they can parallelize and do not compose parallelism

across nested loops or function calls.

B. Speculative parallelization in software

Like T4, some compilers leverage speculation to parallelize a

broader range of sequential programs. Software-only speculative

parallelization [3, 31, 38, 52, 60, 62] incurs significant overheads,

especially to recover from misspeculation, so it is profitable

only for applications where dependences that cause aborts are

extremely rare. Some compilers exploit application properties

to reduce the number of dependences and aborts.

Speculative privatization is a compiler technique that elimi-

nates some false dependences at the cost of increased memory

usage and run-time checks that validate the safety of data

accesses [39, 62]. Recent work uses profiling and static analysis

to reduce these run-time overheads, but still suffers from

expensive misspeculation recovery that makes it unprofitable

for applications with frequent conflicts [3]. Future work could

use these techniques to fully automate T4’s privatization, as

well as to extend privatization to objects in the heap where it

is beneficial.

Salamanca et al. use strip-mining to avoid false sharing

for loops with striding access patterns [65]. T4’s loop task

coarsening fully automates strip-mining, including strip size

selection, and generates prolog and epilog loops to align task

boundaries to cache lines, instead of assuming array accesses

always start at the beginning of a cache line. Additionally, T4

uses spatial hints and stack elimination to reduce other aborts.

T4 uniquely uses Swarm’s nested task spawns to exploit

selective aborts. By using task boundaries as checkpoints to

isolate contentious accesses, T4’s spawners and tiny tasks

repurpose Swarm’s cheap task-spawn mechanisms to achieve

benefits similar to alternative misspeculation recovery tech-

niques that abort a portion of a task instead of an entire large

task [16, 75]. García Yágüez et al. present a software-only

system that performs selective aborts [23]. However, their

system parallelizes one loop level, always aborts whole loop

iterations, and does not support nested task spawns.

C. Thread-level speculation (TLS)

TLS architectures propose to use hardware mechanisms to

make speculative parallelization more broadly beneficial for se-

quential programs [20, 24, 28, 63, 64, 68, 73, 85]. Unfortunately,

TLS architectures suffer from expensive unselective aborts and

serial spawn or commit mechanisms that cannot scale tiny tasks

to many cores (Sec. II). Swarm addresses these issues, enabling

T4’s novel techniques.

Renau et al.’s TLS architecture [64] relaxes the requirement

that task spawns must be serial, allowing speculative tasks to

spawn children independently. This architecture can exploit

some nested parallelism [49]. However, it does not decouple

spawn order from execution order, so cores immediately execute

tasks spawned early even if the tasks are very speculative

and unlikely to commit. Moreover, it is still too restrictive to

allow interleaving task timestamps as needed for progressive

expansion. Finally, it performs serial commits that can bottle-

neck performance, as in other TLS architectures. To address

this per-task overhead, it adaptively merges tasks if there are

more tasks to run than cores. Thus, the system speculates

at the coarsest granularity that fills the machine, resulting in

large tasks prone to expensive unselective aborts. By contrast,

Swarm’s distributed queues manage many more tasks than

cores, which T4 exploits for cheap selective aborts.

TLS compilers [6, 15, 18, 40, 56, 59, 76, 79, 83] are limited by

the architectures they target. Like T4, studies on selecting tasks

for the earliest TLS architectures consider function calls and

loop iterations [54, 79]. However, without sufficient hardware

support for tiny tasks, previous compilers have focused on

selectively parallelizing coarser tasks. POSH [49] also spawns

function calls and loop iterations, but it focuses on profiling

to choose when not to use them as task boundaries, preferring

to form sufficiently coarse tasks to amortize task overheads.

Many TLS compiler techniques have focused on parallelizing

iterations from a single loop level. Many of these techniques

limit the use of speculation to avoid the significant cost of

unselective aborts. Du et al. propose models to statically esti-

mate the likelihood of data dependences, to avoid parallelizing

loops that could yield frequent aborts [18]. Zhai et al. develop

compiler techniques to synchronize frequent data dependences

instead of speculating on them [84]. They distribute loop

iterations to cores in a rigid fashion to enable predictable

point-to-point communication, making synchronization cheap.

The synchronization forms a long critical forwarding path that

includes every iteration of a loop. This rigid synchronization

has some benefits and significant drawbacks over T4. On the

one hand, for applications dominated by inner loops with

dependent iterations (e.g., Class 2 benchmarks in Sec. IX),

synchronization ensures work on the critical path runs in

program order. By contrast, T4 suffers aborts due to order

violations even with spatial hints (Sec. VIII). On the other

hand, this rigid synchronization does not allow for nested

task spawns and stalls cores when the work per iteration is

imperfectly balanced [56], so cores spend time idle even if some

iterations are independent (e.g., in Class 1 benchmarks). By

contrast, T4 uses spatial hints to serialize only dependent tasks,

running other tasks whenever available to keep tens of cores

busy. Moreover, T4 parallelizes the whole program, composing

parallelism across loop nests and functions calls. Future work

is needed to combine the benefits of both approaches.

Kejariwal et al. show that task spawn overheads can elim-

inate speedup when spawning tiny tasks, such as from inner
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loops [42]. SpecDSWP reduces loop parallelization overheads

by a constant factor by pipelining loop fragments across cores

so communication latency is off the critical path [77]. T4’s

chain expansion and spatial hints achieve similar benefits for

loops that must communicate values from one iteration to

another. T4’s task trees yield asymptotically more parallelism

by parallelizing task spawning itself, which delivers order-of-

magnitude speedups for tiny tasks.

Many TLS compilers communicate values through memory,

e.g., by preventing the promotion of shared values to registers so

that they are always resident in memory at task boundaries [49].

This impedes standard compiler optimizations [63], and the

energy and bandwidth requirements of moving entire cache

lines for every task spawn presents a challenge to scaling tiny

tasks to many cores. Some TLS systems introduce hardware

mechanisms to send register values among tasks and allow

software to select which registers to send [10, 44, 68]. T4’s

task-lifting optimizations would reduce the amount of data sent

in such architectures, making task spawns cheaper for them

just as it does for Swarm.

Some prior work proposes to exploit semantic commutativity

with programmer support. This reduces aborts in specula-

tive parallelization, but breaks sequential semantics, forcing

programmers to reason with nondeterministic program out-

put [11, 17, 37, 45]. By contrast, T4 always preserves sequential

semantics, so programmers never worry about races.

XI. CONCLUSION

We have presented T4, a compiler that takes a new approach

to speculatively parallelize sequential programs. T4 uses task

trees to spawn tasks far in advance, exploiting Swarm hardware

to fill the system with work. Trees make tiny tasks practical.

In turn, tiny tasks unlock new opportunities to make aborts

cheap and expose more parallelism. To efficiently spawn tiny

tasks, T4 introduces novel transformations such as progressive

expansion to produce exponential trees for irregular loops, and

a reimagined form of CPS conversion to eliminate contention

on the stack. T4’s task-lifting optimizations make task spawns

cheap, and tiny tasks enable spatial-hint generation, which

makes T4 the first system for speculative parallelization to use

dynamic information from sequential code to exploit locality.

By combining new software and hardware techniques, T4

broadly improves scalability over prior work, extracting enough

parallelism to keep tens of cores busy, including on irregular

code that defeated prior work.
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