
Compiling Sequential
Code for a Speculative
Parallel Architecture

VICTOR A. YING
MARK C. JEFFREY
DANIEL SANCHEZ

ACM STUDENT RESEARCH COMPETITION @ PLDI 2019

How to parallelize sequential code?
Multicores are everywhere.

Parallel programming is hard.

We should parallelize sequential code to use multicores.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE 2

1

32

64

S
p

e
e

d
u

p

1c 32c 64c

bfs
117x

1c 32c 64c

sssp

1c 32c 64c

astar

1c 32c 64c

msf

1c 32c 64c

des

1c 32c 64c

silo

Swarm

Software-only
parallel

Background: Swarm architecture
Recent Swarm architecture [MICRO’15, MICRO’16, ISCA’17]
parallelizes programs that were hard to parallelize

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE 3

1

32

64

S
p

e
e

d
u

p

1c 32c 64c

bfs
117x

1c 32c 64c

sssp

1c 32c 64c

astar

1c 32c 64c

msf

1c 32c 64c

des

1c 32c 64c

silo

Swarm

Software-only
parallel

Background: Swarm architecture
Recent Swarm architecture [MICRO’15, MICRO’16, ISCA’17]
parallelizes programs that were hard to parallelize

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE 3

SCC: compile sequential C/C++ to exploit parallelism on Swarm.

Swarm hardware attributes [Jeffrey et al. MICRO’15]

4

Execution model:
◦ Program comprises timestamped tasks.
◦ Tasks spawn children with greater or equal timestamp.
◦ Tasks appear to execute in timestamp order.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Swarm hardware attributes [Jeffrey et al. MICRO’15]

Executes tasks speculatively
and out of order.

4

Execution model:
◦ Program comprises timestamped tasks.
◦ Tasks spawn children with greater or equal timestamp.
◦ Tasks appear to execute in timestamp order.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Swarm hardware attributes [Jeffrey et al. MICRO’15]

Executes tasks speculatively
and out of order.

4

9-tile, 36-core chip

M
e

m
 co

n
tro

lle
r/IO

Mem controller/IO

Mem controller/IO

M
e

m
 c

o
n

tr
o

lle
r/

IO

Tile

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2

L3 & Dir Bank Router

Task Queuing Unit

Tile organization

Execution model:
◦ Program comprises timestamped tasks.
◦ Tasks spawn children with greater or equal timestamp.
◦ Tasks appear to execute in timestamp order.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Swarm hardware attributes [Jeffrey et al. MICRO’15]

Executes tasks speculatively
and out of order.

Task units manage hundreds
of tiny speculative tasks.

4

9-tile, 36-core chip

M
e

m
 co

n
tro

lle
r/IO

Mem controller/IO

Mem controller/IO

M
e

m
 c

o
n

tr
o

lle
r/

IO

Tile

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2

L3 & Dir Bank Router

Task Queuing Unit

Tile organization

Execution model:
◦ Program comprises timestamped tasks.
◦ Tasks spawn children with greater or equal timestamp.
◦ Tasks appear to execute in timestamp order.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Parallelizing sequential code

Example: maximal independent set:
◦ Iterates through vertices in graph.

5

for (int v = 0; v < numVertices; v++) {
if (state[v] == UNVISITED) {
state[v] = INCLUDED;
for (int nbr = 0; nbr < numNeighbors(v); nbr++)
state[neighbors(v)[nbr]] = EXCLUDED;

}
}

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Parallelizing sequential code

Example: maximal independent set:
◦ Iterates through vertices in graph.

5

for (int v = 0; v < numVertices; v++) {
if (state[v] == UNVISITED) {
state[v] = INCLUDED;
for (int nbr = 0; nbr < numNeighbors(v); nbr++)
state[neighbors(v)[nbr]] = EXCLUDED;

}
}

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Parallelizing sequential code

Example: maximal independent set:
◦ Iterates through vertices in graph.

5

for (int v = 0; v < numVertices; v++) {
if (state[v] == UNVISITED) {
state[v] = INCLUDED;
for (int nbr = 0; nbr < numNeighbors(v); nbr++)
state[neighbors(v)[nbr]] = EXCLUDED;

}
}

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Indirect
memory
accesses

Parallelizing sequential code

Example: maximal independent set:
◦ Iterates through vertices in graph.

One task per outer-loop iteration.
◦ Each tasks spawns the next.

◦ Hardware tries to run tasks in parallel.

5

Time

A

B

C

D

E

F …

for (int v = 0; v < numVertices; v++) {
if (state[v] == UNVISITED) {
state[v] = INCLUDED;
for (int nbr = 0; nbr < numNeighbors(v); nbr++)
state[neighbors(v)[nbr]] = EXCLUDED;

}
}

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Indirect
memory
accesses

Parallelizing sequential code

Example: maximal independent set:
◦ Iterates through vertices in graph.

One task per outer-loop iteration.
◦ Each tasks spawns the next.

◦ Hardware tries to run tasks in parallel.

Hardware tracks memory accesses
to discover data dependences.

5

Time

A

B

C

D

E

F …

for (int v = 0; v < numVertices; v++) {
if (state[v] == UNVISITED) {
state[v] = INCLUDED;
for (int nbr = 0; nbr < numNeighbors(v); nbr++)
state[neighbors(v)[nbr]] = EXCLUDED;

}
}

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

rd

wr

Indirect
memory
accesses

Task chains incur costly misspeculation recovery

Tasks abort if they violated
data dependence.

Tasks that abort must roll
back their effects, including
children they spawned.

6

Time

A

B

C

D

E

F …

A

B

C

D

E

F

rd

wr

…

for (int v = 0; v < numVertices; v++) {
if (state[v] == UNVISITED) {
state[v] = INCLUDED;
for (int nbr = 0; nbr < numNeighbors(v); nbr++)
state[neighbors(v)[nbr]] = EXCLUDED;

}
}

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

ABORT

Task chains incur costly misspeculation recovery

Tasks abort if they violated
data dependence.

Tasks that abort must roll
back their effects, including
children they spawned.

6

Time

D′
E′

F′ …

rd

A

B

C

D

E

F …

A

B

C

D

E

F

rd

wr

…

for (int v = 0; v < numVertices; v++) {
if (state[v] == UNVISITED) {
state[v] = INCLUDED;
for (int nbr = 0; nbr < numNeighbors(v); nbr++)
state[neighbors(v)[nbr]] = EXCLUDED;

}
}

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

ABORT

RE-EXECUTE

Task chains incur costly misspeculation recovery

Tasks abort if they violated
data dependence.

Tasks that abort must roll
back their effects, including
children they spawned.

6

Time

D′
E′

F′ …

rd

A

B

C

D

E

F …

A

B

C

D

E

F

rd

wr

…

for (int v = 0; v < numVertices; v++) {
if (state[v] == UNVISITED) {
state[v] = INCLUDED;
for (int nbr = 0; nbr < numNeighbors(v); nbr++)
state[neighbors(v)[nbr]] = EXCLUDED;

}
}

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Cascading aborts waste a lot of work.
ABORT

RE-EXECUTE

SCC’s decoupled spawn enables selective aborts

Put most work into worker tasks
at the leaves of the task tree.
◦ Use Swarm’s mechanisms for

cheap selective aborts.

7

Time…

D′
rd

wr

A

B

C

D

E

F

rd

Spawners

Workers

for (int v = 0; v < numVertices; v++) {
if (state[v] == UNVISITED) {
state[v] = INCLUDED;
for (int nbr = 0; nbr < numNeighbors(v); nbr++)
state[neighbors(v)[nbr]] = EXCLUDED;

}
}

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

ABORT

RE-EXECUTE

SCC’s balanced task trees enable scalability
Spawners recursively divide
the range of iterations.

8

Time

wr

…

D′…
…
…
…

A

C

E

F

D rd rd

B

Spawners Workers

for (int v = 0; v < numVertices; v++) {
if (state[v] == UNVISITED) {
state[v] = INCLUDED;
for (int nbr = 0; nbr < numNeighbors(v); nbr++)
state[neighbors(v)[nbr]] = EXCLUDED;

}
}

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

ABORT

RE-EXECUTE

SCC’s balanced task trees enable scalability
Spawners recursively divide
the range of iterations.

8

Time

wr

…

D′…
…
…
…

A

C

E

F

D rd rd

B

Spawners Workers

for (int v = 0; v < numVertices; v++) {
if (state[v] == UNVISITED) {
state[v] = INCLUDED;
for (int nbr = 0; nbr < numNeighbors(v); nbr++)
state[neighbors(v)[nbr]] = EXCLUDED;

}
}

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Balanced spawner trees reduce critical
path length to O(log(# iterations)).

ABORT

RE-EXECUTE

Progressive expansion: parallelizing irregular loops

Progressive expansion generates balanced spawner trees
for loops with unknown tripcount.

9

for (i = 0; ; i++)
if (foo(i))

break;

Source code:

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Progressive expansion: parallelizing irregular loops

Progressive expansion generates balanced spawner trees
for loops with unknown tripcount.

9

for (i = 0; ; i++)
if (foo(i))

break;
void iter(Timestamp i) {

if (!done)
if (foo(i))

done = 1;
}

0

iter(0)

iter(1)

Source code:

4

iter(4)

iter(5)

2

iter(2)

iter(3)

6

iter(6)

iter(7)

10

iter(10)

iter(11)

8

iter(8)

iter(9)

12

iter(12)

iter(13)

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

SCC implementation in LLVM/Clang

10

Object file
Clang

frontend

LLVM backend

Optimizations

(e.g., -O3)
x86_64

codegen

C/C++

source

code

Parallelization

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Evaluation Methodology
Simulated 1-, 4-, and 36-core systems.

Simulated hardware consistent with prior work [Jeffrey et al.
MICRO’15].

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE 11
M

e
m

 co
n

tro
lle

r/IO

Mem controller/IO

Mem controller/IO

M
e

m
 c

o
n

tr
o

lle
r/

IO

Tile

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L2

L3 & Dir Bank Router

Task Queuing Unit

Tile:

Results

12

SPEC CPU2006 C/C++ benchmarks compiled with -O3.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Results

12

SPEC CPU2006 C/C++ benchmarks compiled with -O3.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

2.4×

Results

12

6.7×

SPEC CPU2006 C/C++ benchmarks compiled with -O3.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

2.4×

Results

12

6.7×

SPEC CPU2006 C/C++ benchmarks compiled with -O3.

Frequent data dependences, modest scalability

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

2.4×

Results

12

6.7×

SPEC CPU2006 C/C++ benchmarks compiled with -O3.

Rare data dependences, high scalability Frequent data dependences, modest scalability

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

2.4×

Results: Overheads are moderate

13

Serial code, -O3. Parallelized with SCC.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Results: Cores busy most of the time

14SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Results: Cores busy most of the time

14

Cores spend most time executing useful work, not aborting.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Results: Cores busy most of the time

15

Cores spend most time executing useful work, not aborting.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Contributions
Parallel programming is hard. Sequential code has latent
parallelism.

16SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Contributions
Parallel programming is hard. Sequential code has latent
parallelism.

We present SCC: A C/C++ compiler that effectively parallelizes
sequential code by exploiting the recent Swarm architecture.
◦ Speedups of 6.7× gmean and up to 29× on 36 cores.

16SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Contributions
Parallel programming is hard. Sequential code has latent
parallelism.

We present SCC: A C/C++ compiler that effectively parallelizes
sequential code by exploiting the recent Swarm architecture.
◦ Speedups of 6.7× gmean and up to 29× on 36 cores.

Techniques:
◦ Balanced spawner trees: decouple task spawn from most work.

◦ Progressive expansion: speculative spawners for irregular loops.

16SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Questions?
Parallel programming is hard. Sequential code has latent
parallelism.

We present SCC: A C/C++ compiler that effectively parallelizes
sequential code by exploiting recent Swarm architecture.
◦ Speedups of 6.7× gmean and up to 29× on 36 cores.

Techniques:
◦ Balanced spawner trees: decouple task spawn from most work.

◦ Progressive expansion: speculative spawners for irregular loops.

17

Email: victory@csail.mit.edu
SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Backup Slides

18SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Results: Scalability

19

Linear scalability in
462.libquantum and
470.lbm up to 100 cores!

69×

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Balanced spawner trees are key to scalability

20

4 Cores 36 Cores

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Fine-Grained Task Selection
Task heuristics:
◦ Split loop iterations

◦ Split non-inlined function calls and their continuations.

Manual annotations suggest additional task boundaries without
affecting semantics.
◦ Ongoing work: heuristics to fully automate task selection

21SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Progressive expansion: parallelizing irregular loops

Progressive expansion
generates balanced
spawner trees for loops
with unknown tripcount.

22

for (i = 0; ; i++)
if (foo(i)) break;

void iter(Timestamp i) {
if (!done)
if (foo(i)) done = 1;

}

0

iter(0)

iter(1)

Source code:
4

iter(4)

iter(5)

2

iter(2)

iter(3)

6

iter(6)

iter(7)

10

iter(10)

iter(11)

8

iter(8)

iter(9)

12

iter(12)

iter(13)

void spawner(Timestamp i, int stride) {
if (!done) {
swarm_spawn(iter, i);
swarm_spawn(iter, i + 1);
swarm_spawn(spawner, i + stride, 2*stride);
swarm_spawn(spawner, i + 2*stride, 2*stride);

}
}

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Hierarchical timestamps preserve program order
Must generate timestamps for
arbitrary control-flow graph.

Topological sorting gives timestamps
for acyclic control-flow (sub)graphs.

Targeting Fractal extension of Swarm
hardware architecture [ISCA’17].

Loops, function calls handled by
creating subdomains of timestamps.

Fractal hardware tracks hierarchy of
timestamps, preserves apparent
sequential execution.

23

foo(ptr)

entry:

x = load ptr

br x, then, end

then:

call bar()

br end

end:

store ptr, 0

ret

bar()

entry:

br loop

exit:

ret

loop:

i = φ([0,entry];[inc,loop])

store arr[i], 42

inc = i + 1

br (i < N), loop, exit

TS=1

TS=2

TS=3

TS=i

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Hardware Configuration

24SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

