Compiling Sequential
Code for a Speculative
Parallel Architecture

VICTOR A. YING

H
MARK C. JEFFREY @/_m
DANIEL SANCHEZ il

CSAIL

ACM STUDENT RESEARCH COMPETITION @ PLDI 2019

How to parallelize sequential code?

Multicores are everywhere.

Parallel programming is hard.

We should parallelize sequential code to use multicores.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Background: Swarm architecture

Recent Swarm architecture [MICRO’15, MICRO’16, ISCA’17]
parallelizes programs that were hard to parallelize

- Swarm - - Software-only parallel
bfs Sssp astar msf des silo

64 117x

Speedup
w
N

-
—_—
- e Em e mm Em o -
-

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Background: Swarm architecture

Recent Swarm architecture [MICRO’15, MICRO’16, ISCA’17]
parallelizes programs that were hard to parallelize

- Swarm - - Software-only parallel
bfs Sssp astar msf des silo

64 117x

Speedup
w
N

-
—_—
- e Em e mm Em o -
-

SCC: compile sequential C/C++ to exploit parallelism on Swarm.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Swarm hardware attributes peffrey et al. MICRO"15]

Execution model:

> Program comprises timestamped tasks.

> Tasks spawn children with greater or equal timestamp.
> Tasks appear to execute in timestamp order.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Swarm hardware attributes peffrey et al. MICRO"15]

Execution model:

> Program comprises timestamped tasks.

> Tasks spawn children with greater or equal timestamp.
> Tasks appear to execute in timestamp order.

Executes tasks speculatively
and out of order.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Swarm hardware attributes peffrey et al. MICRO"15]

Execution model:
> Program comprises timestamped tasks.

> Tasks spawn children with greater or equal timestamp.
> Tasks appear to execute in timestamp order.

9-tile, 36-core chip Tile organization
Executes tasks speculatively [Wem controllerio] - ,
/ L3 & Dir Bank
and out of order. '

L2
L11/D| |L1I/D [L1I1/D| L1I/D

Core | | Core | Core | | Core

Mem controller/10
| |
| |
=i
)
O1/43]]013u0d RN

Mem controller/10 t

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Swarm hardware attributes peffrey et al. MICRO"15]

Execution model:
> Program comprises timestamped tasks.

> Tasks spawn children with greater or equal timestamp.

> Tasks appear to execute in timestamp order.

9-tile, 36-core chip

01/43]]013u0d W\

Executes tasks speculatively [Mem controller/io
and out of order. % TR
Task units manage hundreds |£ B Ti.Ie
of tiny speculative tasks. g —
sl H
Mem controller/10

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

/
/

/

Tile organization

L3 & Dir Bank

L2

L11/D

L11/D

L11/D

Core

Core

Core

\‘ |

Parallelizing sequential code

for (int v = 0; v < numVertices; v++) {

Example: maximal independent set: if (state[v] == unvisiTep) {

state[v] = INCLUDED;

o lterates through vertices in graph. for (int nbr = @; nbr < numNeighbors(v); nbr++)
state[neighbors(v)[nbr]] = EXCLUDED;
}
}

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Parallelizing sequential code

for (int v = ©0; v < numVertices; v++

Example: maximal independent set:
o lterates through vertices in graph.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Parallelizing sequential code

for (int v = ©0; v < numVertices; v++

Example: maximal independent set:
o lterates through vertices in graph.

state[neighbors(v)[nbr]] = EXCLUDED;

Indirect
memory
accesses

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Parallelizing sequential code

for (int v = ©0; v < numVertices; v++

Example: maximal independent set:
o lterates through vertices in graph.

state[neighbors(v)[nbr]] = EXCLUDED;

One task per outer-loop iteration.

> Each tasks spawns the next. Indirect

> Hardware tries to run tasks in parallel. L ' memory
B % 3 daccesses

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Parallelizing sequential code

for (int v = ©0; v < numVertices; v++

Example: maximal independent set:

o lterates through vertices in graph.
state[neighbors(v)[nbr]] = EXCLUDED;

One task per outer-loop iteration.
o Each tasks spawns the next.

Indirect
memory
accesses

o Hardware tries to run tasks in parallel. = '
B *:ﬂ N wr]
Hardware tracks memory accesses C o
. D
to discover data dependences. \%
F
Time

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Task chains incur costly misspeculation recovery

for (int v = ©0; v < numVertices; v++

Tasks abort if they violated

data dependence.

Tasks that abort must roll
back their effects, including
children they spawned.

Time_

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Task chains incur costly misspeculation recovery

for (int v = ©0; v < numVertices; v++

Tasks abort if they violated
data dependence.

state[neighbors(v)[nbr]] = EXCLUDED;

Tasks that abort must roll
back their effects, including
children they spawned.

|
A \1?
B \ Wel RE-EXECUTE
r ' | \rd |
BORTD' U]
N |

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Task chains incur costly misspeculation recovery

for (int v = ©0; v < numVertices; v++

Tasks abort if they violated
data dependence.

state[neighbors(v)[nbr]] = EXCLUDED;

Tasks that abort must roll
back their effects, including
children they spawned.

|
A \1?
B \ Wel RE-EXECUTE
r ' | \rd |
BORTD' U]
N |

Cascading aborts waste a lot of work.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

SCC’s decoupled spawn enables selective aborts

for (int v = ©0; v < numVertices; v++

state[neighbors(v)[nbr]] = EXCLUDED;

Put most work into worker tasks
at the leaves of the task tree.

o Use Swarm’s mechanisms for
cheap selective aborts.

Workers

RE-EXECUTE

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

SCC’s balanced task trees enable scalability

Spawners recursively divide for (int v = @; v < numvertices; vi+
the range of iterations.

state[neighbors(v)[nbr]] = EXCLUDED;

Spawners Wc/>rkers

WEl RE-EXECUTE
—>[d]
ABORT D

Time‘

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

SCC’s balanced task trees enable scalability

Spawners recursively divide for (int v = @; v < numvertices; vi+
the range of iterations.

state[neighbors(v)[nbr]] = EXCLUDED;

Spawners Wc/>rkers

Balanced spawner trees reduce critical
path length to O(log(# iterations)).

—

WEl RE-EXECUTE
—>[d]
ABORT D

Time‘

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Progressive expansion: parallelizing irregular loops

Progressive expansion generates balanced spawner trees
for loops with unknown tripcount.

Source code:

for (i = ©; ; i++)
if (foo(i))
break;

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Progressive expansion: parallelizing irregular loops

Progressive expansion generates balanced spawner trees
for loops with unknown tripcount.

iter(7)

»[10
| _iter(10) |
iter(11)
—» 8
iter(9)
12

Source code:

for (i = ©; ; i++)
if (foo(i))
break;

iter(1)

- -~
- ~
- ~ o~

— .
void iter(Timestamp i) { -
-.1 2.
if (ldone) =
5 o) er13) |
done = 1;

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

SCC implementation in LLVM/Clang

C/C++
source
code

Clang
frontend

Optimizations
(e.g., -03)

LLVM backend

Parallelization

\ 4

x86_64

codegen

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

»

Obiject file

Evaluation Methodology

Simulated 1-, 4-, and 36-core systems.

Tile:
Mem controller/10 /

L3 & Dir Bank -

L2
L11/D| L11/D [L1I1/D| L1I/D

Core | | Core | Core | | Core

Mem controller/10
| |
| |
=
)
O1/43]]043u0d WA

Mem controller/10

Simulated hardware consistent with prior work [Jeffrey et al.
MICRO’15].

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Results

SPEC CPU2006 C/C++ benchmarks compiled with -03.
B Original N 1c SCC I 4c SCC Il :6¢ SCC

28 29 12

Performance
e I N W O I P

ibgntm lbm milc astar hmmer sphinx mcf gmean

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Results

SPEC CPU2006 C/C++ benchmarks compiled with -03.
B Original N 1c SCC I 4c SCC Il :6¢ SCC

28 29 12

Performance
e I N W O I P

ibgntm lbm milc astar hmmer sphinx mcf gmean

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Results

SPEC CPU2006 C/C++ benchmarks compiled with -03.
B Original N 1c SCC I 4c SCC Il :6¢ SCC

28 29 12

Performance
e I N W O I P

ibgntm lbm milc astar hmmer sphinx mcf gmean

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Results

SPEC CPU2006 C/C++ benchmarks compiled with -03.
B Original N 1c SCC I 4c SCC Il :6¢ SCC

28 29 12

Performance
e I N W O I P

ibgntm lbm milc astar hmmer sphinx mcf gmean

¥
Frequent data dependences, modest scalability

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Results

SPEC CPU2006 C/C++ benchmarks compiled with -03.
B Original N 1c SCC I 4c SCC Il :6¢ SCC
28 29 1.2

Performance
e I N W O I P

ibgntm lbm milc astar hmmer sphinx mcf gmean
[|] [| ']
dependences, modest scalability

Y
Rare data dependences, high scalability Frequent data

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE 12

Results: Overheads are moderate
Serial code, -03. Parallelized with SCC.

I Non-task
B Task-commit

1.2
1.0
0.8
0.6
0.4
0.2
0.0

01436 01436 01436 01436 01436 01436 DlEEI-'E
libgntm Ilbm milc astar hmmer sphinx

Execution time

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Results: Cores busy most of the time

I Non-task I Task-abort Mo-task

B Task-commit B8 Full-queue Other
2.2 1.7

1.2
1.0
0.8
0.6
0.4
0.2
0.0

Execution time

01436 01436 01436 01436 01436 01436 01436
libgntm Ilbm milc astar hmmer sphinx mcf

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Results: Cores busy most of the time

I Non-task I Task-abort Mo-task

B Task-commit B8 Full-queue Other
2.2 1.7

1.2
1.0
0.8
0.6
0.4
0.2
0.0

Execution time

01436 01436 01436 01436 01436 01436 01436
libgntm Ilbm milc astar hmmer sphinx mcf

Cores spend most time executing useful work, not aborting.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Results: Cores busy most of the time

I Non-task I Task-abort Mo-task

B Task-commit B8 Full-queue Other
2.2 1.7

1.2
1.0
0.8
0.6
0.4
0.2
0.0

Execution time

01436 01436 01436 01436 01436 01436 01436
libgntm Ilbm milc astar hmmer sphinx mcf

Cores spend most time executing useful work, not aborting.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Contributions

Parallel programming is hard. Sequential code has latent
parallelism.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Contributions

Parallel programming is hard. Sequential code has latent
parallelism.

We present SCC: A C/C++ compiler that effectively parallelizes
sequential code by exploiting the recent Swarm architecture.

> Speedups of 6.7x gmean and up to 29x on 36 cores.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Contributions

Parallel programming is hard. Sequential code has latent
parallelism.

We present SCC: A C/C++ compiler that effectively parallelizes
sequential code by exploiting the recent Swarm architecture.

> Speedups of 6.7x gmean and up to 29x on 36 cores.

Techniques:
° Balanced spawner trees: decouple task spawn from most work.

> Progressive expansion: speculative spawners for irregular loops.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Questions?

Parallel programming is hard. Sequential code has latent
parallelism.

We present SCC: A C/C++ compiler that effectively parallelizes
sequential code by exploiting recent Swarm architecture.
> Speedups of 6.7x gmean and up to 29x on 36 cores.

Techniques:
° Balanced spawner trees: decouple task spawn from most work.

° Progressive expansion: speculative spawners for irregular loops.

Email: victory@csail.mit.edu

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Backup Slides

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Results: Scalability

100

— lbm
- = libgntm

80

69x

Linear scalability in
462.libguantum and
470.lbm up to 100 cores!

Performance

0 20 40 60 80 100
Cores

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Balanced spawner trees are key to scalability

0 Non-task I Task-abort B4 No-task
B Task-commit B8 Full-queue Other

3.5F
v 3.0
£ 15 2.5
p 2.0
S 10 15
=
2 05 1.0
E 0.5
005 LUE suUB sUB SUB 00SUE sus
libgntm Ibm milc astar libgntm lbm
4 Cores 36 Cores

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Fine-Grained Task Selection

Task heuristics:
o Split loop iterations
o Split non-inlined function calls and their continuations.

Manual annotations suggest additional task boundaries without
affecting semantics.
> Ongoing work: heuristics to fully automate task selection

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Progressive expansion: parallelizing irregular loops

Progressive expa nsion voﬁ ?!)(ajg:g('{l:'imestamp i, int stride) {
L (iter, i);
generates balanced cwarm_spaun(iter, 1 + 1);
swarm_spawn(spawner, i + stride, 2*stride);
swarm_spawn(spawner, i + 2*stride, 2*stride);
Spawner trees 10r 100psS }
with unknown tripcount. H— ——
~~~~~~~~~~
~~~~~ g | iter(7)
2 >
iter(2 |_iter(10) |
Source code: - ool | Eﬁerm)

for (i = Q; ; i++)
if ('FOO(i)) break; |‘void iter(Timestamp i) {x‘
}

10
8
|_iter(8) |
iter(9)
12

| iter(12) |
| iter(13) |

if (!done)
if (foo(i)) done = 1;

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE 22

Hierarchical timestamps preserve program order

Must generate timestamps for
arbitrary control-flow graph. fool(ptr) bar)

Topological sorting gives timestamps
for acyclic control-flow (sub)graphs.

entry:
br loop

-
:
K

\
X = load ptr | TS=11

------- ----J

Targeting Fractal extension of Swarm N oo
hardware architecture [ISCA’17]. . i = d{[0;entrylilinc,loop])
hen: _ r.--ﬂ’.(.[.‘[_]_42L__.=°
. Il bar =9 1 store arrli], TS=i
Loops, function calls handled by sraga—m=mi| | | | b ——==
creating subdomains of timestamps. _— L { br (i < N), loop, exit
: end:
Fractal hardware tracks hierarchy of etore i 0 Foms
timestamps, preserves apparent N Satntnte el exit
ret

sequential execution.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE 23

Hardware Configuration

36 cores in 9 tiles (4 cores/tile), 2 GHz, x86-64 ISA;
Cores single-issue in-order scoreboarded (stall-on-use) |26];
or Haswell-like 4-wide Q0O superscalar [20]

L1 caches 16 KB, per-core, split D/I, 8-way, 2-cycle latency
L2 caches 256 KB, per-tile, 8-way, inclusive, 7-cycle latency
9 MB, shared, static NUCA [33] (1 MB bank/tile),
16-way, inclusive, 9-cycle bank latency
Coherence MESI, 64 B lines, in-cache directories

3x3 mesh, 128-bit links, X-Y routing,
1 cycle/hop when going straight, 2 cycles on turns (like Tile64 [60])
Main mem 4 controllers at chip edges, 120-cycle latency

L3 cache

NoC

64 task queue entries/core (2304 total),

16 commit queue entries/core (576 total)

2 Kbit 8-way Bloom filters, Hs hash functions [10]
Conflicts Tile checks take 5 cycles (Bloom filters)

+ 1 cycle per timestamp compared in the commit queue

Queues

Fractal ti 128-bit virtual times, tiles send updates to
actal me (i tual time arbiter every 200 cycles

Spills Spill 15 tasks when task queue is 85% full

Table 4.1: Configuration of the 36-core system.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE 24

