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How to parallelize sequential code?

Multicores are everywhere.

Parallel programming is hard.

We should parallelize sequential code to use multicores.
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Background: Swarm architecture

Recent Swarm architecture [MICRO’15, MICRO’16, ISCA’17]
parallelizes programs that were hard to parallelize
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SCC: compile sequential C/C++ to exploit parallelism on Swarm.
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Swarm hardware attributes peffrey et al. MICRO"15]

Execution model:

> Program comprises timestamped tasks.

> Tasks spawn children with greater or equal timestamp.
> Tasks appear to execute in timestamp order.
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Swarm hardware attributes peffrey et al. MICRO"15]

Execution model:

> Program comprises timestamped tasks.

> Tasks spawn children with greater or equal timestamp.
> Tasks appear to execute in timestamp order.

Executes tasks speculatively
and out of order.
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Swarm hardware attributes peffrey et al. MICRO"15]

Execution model:
> Program comprises timestamped tasks.

> Tasks spawn children with greater or equal timestamp.
> Tasks appear to execute in timestamp order.
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Swarm hardware attributes peffrey et al. MICRO"15]

Execution model:
> Program comprises timestamped tasks.

> Tasks spawn children with greater or equal timestamp.

> Tasks appear to execute in timestamp order.

9-tile, 36-core chip
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Parallelizing sequential code

for (int v = 0; v < numVertices; v++) {

Example: maximal independent set: if (state[v] == unvisiTep) {

state[v] = INCLUDED;

o lterates through vertices in graph. for (int nbr = @; nbr < numNeighbors(v); nbr++)
state[neighbors(v)[nbr]] = EXCLUDED;
}
}
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for (int v = ©0; v < numVertices; v++

Example: maximal independent set:
o lterates through vertices in graph.
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Parallelizing sequential code

for (int v = ©0; v < numVertices; v++

Example: maximal independent set:
o lterates through vertices in graph.

state[neighbors(v)[nbr]] = EXCLUDED;

Indirect
memory
accesses
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Parallelizing sequential code

for (int v = ©0; v < numVertices; v++

Example: maximal independent set:
o lterates through vertices in graph.

state[neighbors(v)[nbr]] = EXCLUDED;

One task per outer-loop iteration.

> Each tasks spawns the next. Indirect

> Hardware tries to run tasks in parallel. L ' memory
B % 3 daccesses
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Parallelizing sequential code

for (int v = ©0; v < numVertices; v++

Example: maximal independent set:

o lterates through vertices in graph.
state[neighbors(v)[nbr]] = EXCLUDED;

One task per outer-loop iteration.
o Each tasks spawns the next.

Indirect
memory
accesses

o Hardware tries to run tasks in parallel. = '
B *:ﬂ N wr]
Hardware tracks memory accesses C o
. D
to discover data dependences. \%
F
Time
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Task chains incur costly misspeculation recovery

for (int v = ©0; v < numVertices; v++

Tasks abort if they violated

data dependence.

Tasks that abort must roll
back their effects, including
children they spawned.

Time_
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Task chains incur costly misspeculation recovery

for (int v = ©0; v < numVertices; v++

Tasks abort if they violated
data dependence.

state[neighbors(v)[nbr]] = EXCLUDED;

Tasks that abort must roll
back their effects, including
children they spawned.
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Task chains incur costly misspeculation recovery

for (int v = ©0; v < numVertices; v++

Tasks abort if they violated
data dependence.

state[neighbors(v)[nbr]] = EXCLUDED;

Tasks that abort must roll
back their effects, including
children they spawned.
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Cascading aborts waste a lot of work.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE




SCC’s decoupled spawn enables selective aborts

for (int v = ©0; v < numVertices; v++

state[neighbors(v)[nbr]] = EXCLUDED;

Put most work into worker tasks
at the leaves of the task tree.

o Use Swarm’s mechanisms for
cheap selective aborts.

Workers

RE-EXECUTE
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SCC’s balanced task trees enable scalability

Spawners recursively divide for (int v = @; v < numvertices; vi+
the range of iterations.

state[neighbors(v)[nbr]] = EXCLUDED;

Spawners Wc/>rkers
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SCC’s balanced task trees enable scalability

Spawners recursively divide for (int v = @; v < numvertices; vi+
the range of iterations.

state[neighbors(v)[nbr]] = EXCLUDED;

Spawners Wc/>rkers

Balanced spawner trees reduce critical
path length to O(log(# iterations)).
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Progressive expansion: parallelizing irregular loops

Progressive expansion generates balanced spawner trees
for loops with unknown tripcount.

Source code:

for (i = ©; ; i++)
if (foo(i))
break;
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Progressive expansion: parallelizing irregular loops

Progressive expansion generates balanced spawner trees
for loops with unknown tripcount.

iter(7)

»[ 10
| _iter(10) |
iter(11)
—» 8
iter(9)
12

Source code:

for (i = ©; ; i++)
if (foo(i))
break;

iter(1)

- -~
- ~
- ~ o~

— .
void iter(Timestamp i) { -
-.1 2.
if (ldone) =
5 o) er13) |
done = 1;
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SCC implementation in LLVM/Clang

C/C++
source
code

Clang
frontend

Optimizations
(e.g., -03)

LLVM backend

Parallelization

\ 4

x86_64

codegen

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

»

Obiject file




Evaluation Methodology

Simulated 1-, 4-, and 36-core systems.
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Simulated hardware consistent with prior work [Jeffrey et al.
MICRO’15].
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Results

SPEC CPU2006 C/C++ benchmarks compiled with -03.
B Original N 1c SCC I 4c SCC Il :6¢ SCC
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Results
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Frequent data dependences, modest scalability
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Results

SPEC CPU2006 C/C++ benchmarks compiled with -03.
B Original N 1c SCC I 4c SCC Il :6¢ SCC
28 29 1.2

Performance
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[ | ] [ | ' ]
dependences, modest scalability

Y
Rare data dependences, high scalability Frequent data
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Results: Overheads are moderate
Serial code, -03. Parallelized with SCC.
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Results: Cores busy most of the time
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Cores spend most time executing useful work, not aborting.
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Contributions

Parallel programming is hard. Sequential code has latent
parallelism.
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Contributions

Parallel programming is hard. Sequential code has latent
parallelism.

We present SCC: A C/C++ compiler that effectively parallelizes
sequential code by exploiting the recent Swarm architecture.

> Speedups of 6.7x gmean and up to 29x on 36 cores.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE



Contributions

Parallel programming is hard. Sequential code has latent
parallelism.

We present SCC: A C/C++ compiler that effectively parallelizes
sequential code by exploiting the recent Swarm architecture.

> Speedups of 6.7x gmean and up to 29x on 36 cores.

Techniques:
° Balanced spawner trees: decouple task spawn from most work.

> Progressive expansion: speculative spawners for irregular loops.
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Questions?

Parallel programming is hard. Sequential code has latent
parallelism.

We present SCC: A C/C++ compiler that effectively parallelizes
sequential code by exploiting recent Swarm architecture.
> Speedups of 6.7x gmean and up to 29x on 36 cores.

Techniques:
° Balanced spawner trees: decouple task spawn from most work.

° Progressive expansion: speculative spawners for irregular loops.

Email: victory@csail.mit.edu
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Backup Slides
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Results: Scalability
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Balanced spawner trees are key to scalability

0 Non-task I Task-abort B4 No-task
B Task-commit B8 Full-queue Other

3.5F
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Fine-Grained Task Selection

Task heuristics:
o Split loop iterations
o Split non-inlined function calls and their continuations.

Manual annotations suggest additional task boundaries without
affecting semantics.
> Ongoing work: heuristics to fully automate task selection
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Progressive expansion: parallelizing irregular loops

Progressive expa nsion voﬁ ?!)(ajg:g('{l:'imestamp i, int stride) {
L (iter, i);
generates balanced cwarm_spaun(iter, 1 + 1);
swarm_spawn(spawner, i + stride, 2*stride);
swarm_spawn(spawner, i + 2*stride, 2*stride);
Spawner trees 10r 100psS }
with unknown tripcount. H— ——
~~~~~~~~~~
~~~~~ g | iter(7)
2 >
iter(2 |_iter(10) |
Source code: - ool | Eﬁerm)

for (i = Q; ; i++)
if ('FOO(i) ) break; |‘void iter(Timestamp i) {x‘
}

10
8
|_iter(8) |
iter(9)
12

| iter(12) |
| iter(13) |

if (!done)
if (foo(i)) done = 1;
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Hierarchical timestamps preserve program order

Must generate timestamps for
arbitrary control-flow graph. fool(ptr) bar)

Topological sorting gives timestamps
for acyclic control-flow (sub)graphs.

entry:
br loop

-
:
K

\
X = load ptr | TS=11

------- ----J

Targeting Fractal extension of Swarm N oo
hardware architecture [ISCA’17]. . i = d{[0;entrylilinc,loop])
hen: _ r.--ﬂ’.(.[.‘[_]_42L__.=°
. Il bar =9 1 store arrli], TS=i
Loops, function calls handled by sraga—m=mi| | | | b ——==
creating subdomains of timestamps. _— L { br (i < N), loop, exit
: end:
Fractal hardware tracks hierarchy of etore i 0 Foms
timestamps, preserves apparent N Satntnte el exit
ret

sequential execution.
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Hardware Configuration

36 cores in 9 tiles (4 cores/tile), 2 GHz, x86-64 ISA;
Cores single-issue in-order scoreboarded (stall-on-use) |26];
or Haswell-like 4-wide Q0O superscalar [20]

L1 caches 16 KB, per-core, split D/I, 8-way, 2-cycle latency
L2 caches 256 KB, per-tile, 8-way, inclusive, 7-cycle latency
9 MB, shared, static NUCA [33] (1 MB bank/tile),
16-way, inclusive, 9-cycle bank latency
Coherence MESI, 64 B lines, in-cache directories

3x3 mesh, 128-bit links, X-Y routing,
1 cycle/hop when going straight, 2 cycles on turns (like Tile64 [60])
Main mem 4 controllers at chip edges, 120-cycle latency

L3 cache

NoC

64 task queue entries/core (2304 total),

16 commit queue entries/core (576 total)

2 Kbit 8-way Bloom filters, Hs hash functions [10]
Conflicts Tile checks take 5 cycles (Bloom filters)

+ 1 cycle per timestamp compared in the commit queue

Queues

Fractal ti 128-bit virtual times, tiles send updates to
actal me (i tual time arbiter every 200 cycles

Spills  Spill 15 tasks when task queue is 85% full

Table 4.1: Configuration of the 36-core system.
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