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How to parallelize sequential code?
Multicores are everywhere.

Parallel programming is hard.

We should parallelize sequential code to use multicores.
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Background: Swarm architecture
Recent Swarm architecture [MICRO’15, MICRO’16, ISCA’17] 
parallelizes programs that were hard to parallelize
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parallelizes programs that were hard to parallelize

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE 3

SCC: compile sequential C/C++ to exploit parallelism on Swarm.



Swarm hardware attributes [Jeffrey et al. MICRO’15]

4

Execution model:
◦ Program comprises timestamped tasks.
◦ Tasks spawn children with greater or equal timestamp.
◦ Tasks appear to execute in timestamp order.
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9-tile, 36-core chip
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◦ Tasks spawn children with greater or equal timestamp.
◦ Tasks appear to execute in timestamp order.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE



Swarm hardware attributes [Jeffrey et al. MICRO’15]

Executes tasks speculatively 
and out of order.

Task units manage hundreds 
of tiny speculative tasks.
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Execution model:
◦ Program comprises timestamped tasks.
◦ Tasks spawn children with greater or equal timestamp.
◦ Tasks appear to execute in timestamp order.
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Parallelizing sequential code

Example: maximal independent set:
◦ Iterates through vertices in graph.

5

for (int v = 0; v < numVertices; v++) {
if (state[v] == UNVISITED) {
state[v] = INCLUDED;
for (int nbr = 0; nbr < numNeighbors(v); nbr++)
state[neighbors(v)[nbr]] = EXCLUDED;

}
}

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE



Parallelizing sequential code

Example: maximal independent set:
◦ Iterates through vertices in graph.

5

for (int v = 0; v < numVertices; v++) {
if (state[v] == UNVISITED) {
state[v] = INCLUDED;
for (int nbr = 0; nbr < numNeighbors(v); nbr++)
state[neighbors(v)[nbr]] = EXCLUDED;

}
}

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE



Parallelizing sequential code

Example: maximal independent set:
◦ Iterates through vertices in graph.

5

for (int v = 0; v < numVertices; v++) {
if (state[v] == UNVISITED) {
state[v] = INCLUDED;
for (int nbr = 0; nbr < numNeighbors(v); nbr++)
state[neighbors(v)[nbr]] = EXCLUDED;

}
}

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE

Indirect 
memory 
accesses



Parallelizing sequential code

Example: maximal independent set:
◦ Iterates through vertices in graph.

One task per outer-loop iteration.
◦ Each tasks spawns the next.

◦ Hardware tries to run tasks in parallel.
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}
}
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Parallelizing sequential code

Example: maximal independent set:
◦ Iterates through vertices in graph.

One task per outer-loop iteration.
◦ Each tasks spawns the next.

◦ Hardware tries to run tasks in parallel.

Hardware tracks memory accesses 
to discover data dependences.
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Task chains incur costly misspeculation recovery

Tasks abort if they violated 
data dependence.

Tasks that abort must roll 
back their effects, including 
children they spawned.
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Cascading aborts waste a lot of work.
ABORT
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SCC’s decoupled spawn enables selective aborts

Put most work into worker tasks 
at the leaves of the task tree.
◦ Use Swarm’s mechanisms for 

cheap selective aborts.
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SCC’s balanced task trees enable scalability
Spawners recursively divide 
the range of iterations.
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Balanced spawner trees reduce critical 
path length to O(log(# iterations)).
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Progressive expansion: parallelizing irregular loops

Progressive expansion generates balanced spawner trees 
for loops with unknown tripcount.

9

for (i = 0; ; i++)
if (foo(i))

break;

Source code:
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Progressive expansion: parallelizing irregular loops

Progressive expansion generates balanced spawner trees 
for loops with unknown tripcount.
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for (i = 0; ; i++)
if (foo(i))

break;
void iter(Timestamp i) {

if (!done)
if (foo(i))

done = 1;
}
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iter(0)

iter(1)

Source code:

4

iter(4)
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SCC implementation in LLVM/Clang
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Object file
Clang

frontend

LLVM backend

Optimizations

(e.g., -O3)
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source 
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Evaluation Methodology
Simulated 1-, 4-, and 36-core systems.

Simulated hardware consistent with prior work [Jeffrey et al. 
MICRO’15].
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Results
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SPEC CPU2006 C/C++ benchmarks compiled with -O3.
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Results

12

6.7×

SPEC CPU2006 C/C++ benchmarks compiled with -O3.

Rare data dependences, high scalability Frequent data dependences, modest scalability
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Results: Overheads are moderate
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Serial code, -O3.   Parallelized with SCC.
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Results: Cores busy most of the time
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Cores spend most time executing useful work, not aborting.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE



Results: Cores busy most of the time

15

Cores spend most time executing useful work, not aborting.

SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE



Contributions
Parallel programming is hard. Sequential code has latent 
parallelism.

16SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE



Contributions
Parallel programming is hard. Sequential code has latent 
parallelism.

We present SCC: A C/C++ compiler that effectively parallelizes 
sequential code by exploiting the recent Swarm architecture.
◦ Speedups of 6.7× gmean and up to 29× on 36 cores.

16SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE



Contributions
Parallel programming is hard. Sequential code has latent 
parallelism.

We present SCC: A C/C++ compiler that effectively parallelizes 
sequential code by exploiting the recent Swarm architecture.
◦ Speedups of 6.7× gmean and up to 29× on 36 cores.

Techniques:
◦ Balanced spawner trees: decouple task spawn from most work.

◦ Progressive expansion: speculative spawners for irregular loops.

16SCC: COMPILING SEQUENTIAL CODE FOR A SPECULATIVE PARALLEL ARCHITECTURE



Questions?
Parallel programming is hard. Sequential code has latent 
parallelism.

We present SCC: A C/C++ compiler that effectively parallelizes 
sequential code by exploiting recent Swarm architecture.
◦ Speedups of 6.7× gmean and up to 29× on 36 cores.

Techniques:
◦ Balanced spawner trees: decouple task spawn from most work.

◦ Progressive expansion: speculative spawners for irregular loops.
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Email: victory@csail.mit.edu
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Backup Slides
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Results: Scalability

19

Linear scalability in 
462.libquantum and 
470.lbm up to 100 cores!

69×
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Balanced spawner trees are key to scalability

20

4 Cores 36 Cores
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Fine-Grained Task Selection
Task heuristics:
◦ Split loop iterations

◦ Split non-inlined function calls and their continuations.

Manual annotations suggest additional task boundaries without 
affecting semantics.
◦ Ongoing work: heuristics to fully automate task selection
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Progressive expansion: parallelizing irregular loops

Progressive expansion
generates balanced 
spawner trees for loops 
with unknown tripcount.
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for (i = 0; ; i++)
if (foo(i)) break;

void iter(Timestamp i) {
if (!done)
if (foo(i)) done = 1;

}

0

iter(0)

iter(1)

Source code:
4

iter(4)

iter(5)
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iter(7)
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void spawner(Timestamp i, int stride) {
if (!done) {
swarm_spawn(iter, i);
swarm_spawn(iter, i + 1);
swarm_spawn(spawner, i + stride, 2*stride);
swarm_spawn(spawner, i + 2*stride, 2*stride);

}
}
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Hierarchical timestamps preserve program order
Must generate timestamps for 
arbitrary control-flow graph.

Topological sorting gives timestamps 
for acyclic control-flow (sub)graphs.

Targeting Fractal extension of Swarm 
hardware architecture [ISCA’17].

Loops, function calls handled by 
creating subdomains of timestamps.

Fractal hardware tracks hierarchy of 
timestamps, preserves apparent 
sequential execution. 
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foo(ptr)

entry:

x = load ptr

br x, then, end

then:

call bar()

br end

end:

store ptr, 0

ret

bar()

entry:

br loop

exit:

ret

loop:

i = φ([0,entry];[inc,loop])

store arr[i], 42 

inc = i + 1

br (i < N), loop, exit

TS=1

TS=2

TS=3

TS=i
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Hardware Configuration
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